Chapter 303

Deming Regression

Introduction

Deming regression is a technique for fitting a straight line to two-dimensional data where both variables, \(X\) and \(Y\), are measured with error. This is different from simple linear regression where only the response variable, \(Y\), is measured with error. Deming regression is often used for method comparison studies in clinical chemistry to look for systematic differences between two measurement methods.

Deming regression uses paired measurements, \((x_i, y_i)\), measured with errors, \(\varepsilon_i\) and \(\delta_i\), where

\[
\begin{align*}
x_i &= X_i + \varepsilon_i \\
y_i &= Y_i + \delta_i
\end{align*}
\]

to estimate the intercept, \(\beta_0\), and the slope, \(\beta_1\), in the equation

\[
\hat{Y}_i = \beta_0 + \beta_1 \hat{X}_i.
\]

\(\hat{X}_i\) and \(\hat{Y}_i\) are estimates of the “true” (or expected) values of \(X_i\) and \(Y_i\), respectively.

Deming regression assumes that the measurement error ratio, \(\lambda = V(\varepsilon_i) / V(\delta_i)\), is constant. The procedure requires the user to either input a known error ratio or to provide multiple measurements from each subject so that the error ratio can be estimated from the data. When \(\lambda = 1\), Deming regression gives the same result as orthogonal regression.

Both simple (unweighted) and weighted Deming regression methods are available in this procedure. Regression coefficients and predicted values are calculated using the formulas given in Linnet K. (1990). The standard errors of the regression coefficients and predicted values are calculated using the jackknife leave-one-out method. A pair of tests for the overall hypothesis that \(Y = X\) is also computed.
Experimental Design

Typical designs suitable for Deming regression involve \(N \) paired measurements, \((x_i, y_i), i = 1, \ldots, N\), similar to the common input for simple linear regression. The measurement error ratio, \(\lambda \), is required in Deming regression so the measurement error for each variable must be either entered as a known value or computed from multiple measurements within each subject.

Known Measurement Error

When the measurement error is known, only one response is required for each variable. Typical data of this type are shown in the table below.

Typical Data if Measurement Error is Known

<table>
<thead>
<tr>
<th>Subject</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7.9</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>10.5</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>6.5</td>
</tr>
<tr>
<td>6</td>
<td>8.2</td>
<td>7.3</td>
</tr>
<tr>
<td>7</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>8</td>
<td>10.3</td>
<td>10.6</td>
</tr>
<tr>
<td>9</td>
<td>7.1</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Unknown Measurement Error

When the measurement errors for each variable are unknown they must be calculated using multiple measurements (i.e. 2 or more) within each subject. In this case, the paired measurements used in Deming regression, \((x_i, y_i)\), represent the means of the individual replicates. That is

\[
x_i = \bar{x}_i = \frac{\sum_{j=1}^{k_{x,i}} x_{i,j}}{k_{x,i}} \quad \text{and} \quad y_i = \bar{y}_i = \frac{\sum_{j=1}^{k_{y,i}} y_{i,j}}{k_{y,i}}.
\]

The \(X \) and \(Y \) variables do not necessarily have to have the same number of replicates (i.e. \(k_{x,i} \) does not have to be equal to \(k_{y,i} \)). Typical data of this type are shown in the table below.

Typical Data if Measurement Error is Unknown

<table>
<thead>
<tr>
<th>Subject</th>
<th>X1</th>
<th>X2</th>
<th>Y1</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>35</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>75</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>85</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>102</td>
<td>104</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>122</td>
<td>125</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>138</td>
<td>136</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>152</td>
<td>152</td>
<td>101</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>176</td>
<td>173</td>
<td>115</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>186</td>
<td>182</td>
<td>132</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>215</td>
<td>212</td>
<td>146</td>
<td>145</td>
</tr>
</tbody>
</table>

It is possible to perform Deming regression if the measurement error is known for one variable and unknown for the other. In this case, the data would be a hybrid of the two types described above.
Technical Details

The methods and results in this chapter are based on the formulas given in Linnet K. (1990).

Assumptions

Deming regression requires the following assumptions:

1. The measurement errors, ε_i and δ_i, are independent and Normally distributed with expected values of zero and variances $V(\varepsilon_i)$ and $V(\delta_i)$, respectively, which are constant or at least proportional.

2. The measurement error variance ratio $\lambda = V(\varepsilon_i)/V(\delta_i)$ is constant.

3. The subjects are independent of one another and were selected at random from a larger population.

Simple Deming Regression with Constant Errors

Define X_i and Y_i, $i = 1, \ldots, N$, as the “true” (or expected) values for two variables sampled with error to give the observed values x_i and y_i, respectively. We then have

$$x_i = X_i + \varepsilon_i$$

$$y_i = Y_i + \delta_i,$$

where ε_i and δ_i are error terms that are Normally distributed with means equal to zero and variances $V(\varepsilon)$ and $V(\delta)$, respectively.

Known Measurement Error

When the measurement errors for each variable are known, the variances $V(\varepsilon)$ and $V(\delta)$ are calculated from the known values of standard deviation as

$$V(\varepsilon) = SD(\varepsilon)^2$$

and from coefficient of variation (COV) values as

$$V(\varepsilon) = (COV(\varepsilon) \times \bar{x})^2$$

$$V(\delta) = (COV(\delta) \times \bar{y})^2$$

Unknown Measurement Error

When the measurement errors for each variable are unknown and must be estimated using multiple measurements within each subject, x_i and y_i represent the means of the individual replicates. That is

$$x_i = \bar{x_i} = \frac{\sum_{j=1}^{k} x_{ij}}{k_X}$$

$$y_i = \bar{y_i} = \frac{\sum_{j=1}^{k} y_{ij}}{k_Y}.$$}

The variances $V(\varepsilon)$ and $V(\delta)$ are calculated as

$$V(\varepsilon) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{k} (x_{ij} - \bar{x_i})^2}{\sum_{i=1}^{N} (k_{x,i} - 1)}$$

$$V(\delta) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{k} (y_{ij} - \bar{y_i})^2}{\sum_{i=1}^{N} (k_{y,i} - 1)}$$
Deming Regression

Coefficient Estimates
Let λ be the constant ratio of the two error variances such that

$$
\lambda = \frac{V(\varepsilon)}{V(\delta)}
$$

Further define \hat{X}_i and \hat{Y}_i as the estimates of the “true” values X_i and Y_i, respectively. Using a series of N paired measurements, (x_i, y_i), the linear relationship is estimated by the equation

$$
\hat{Y}_i = \beta_0 + \beta_1 \hat{X}_i,
$$

where β_0 is the intercept and β_1 is the slope. The least-squares approach of Deming regression minimizes the sum of squares

$$
SS = \sum_{i=1}^{N} \left[(x_i - \bar{X})^2 + \lambda(y_i - \bar{Y})^2 \right].
$$

The slope estimate, b_1, is computed as

$$
b_1 = \frac{(\lambda q - u) + \sqrt{(u - \lambda q)^2 + 4\lambda p^2}}{2\lambda p}
$$

with

$$
u = \sum_{i=1}^{N} (x_i - \bar{x})^2,
q = \sum_{i=1}^{N} (y_i - \bar{y})^2,
p = \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y}).
$$

The intercept estimate, b_0, is computed as

$$
b_0 = \bar{y} - b_1 \bar{x}.
$$

Confidence Intervals
100(1 - α)\% confidence intervals for the slope and intercept are

$$
b_1 \pm t_{1-\alpha/2,N-2} SE(b_1)
$$

and

$$
b_0 \pm t_{1-\alpha/2,N-2} SE(b_0),
$$

respectively. The standard errors are calculated using the jackknife method as described later. Note that some programs (e.g. MedCalc, SAS Macro by Allison Deal) use $N - 1$ instead of $N - 2$ degrees of freedom. CLSI EP09-A3, Appendix H, indicates that $N - 2$ degrees of freedom should be used.

True Value Estimates
Estimated true values are computed using the estimated regression coefficients and λ as

$$
\hat{X}_i = x_i + \frac{\lambda b_1 d_i}{(1 + \lambda b_1^2)}
$$

and

$$
\hat{Y}_i = y_i - \frac{d_i}{(1 + \lambda b_1^2)}
$$

with

$$
d_i = y_i - (b_0 + b_1 x_i).
$$

where d_i represents the raw y residuals.
Hypothesis Tests

The null hypothesis of identity (i.e. that \(Y = X \)), is tested by two individual tests. The first tests that the slope is equal to one:

\[H_0: \beta_1 = 1 \] vs. \[H_1: \beta_1 \neq 1, \]

with t-statistic

\[t = \frac{(b_1 - 1)}{SE(b_1)}. \]

The second is a test of location difference, independent of the test of the slope:

\[H_0: Y - \bar{X} = 0 \] vs. \[H_1: Y - \bar{X} \neq 0, \]

with t-statistic

\[t = \frac{(\bar{Y} - \bar{X})}{SE(\bar{Y} - \bar{X})}. \]

The standard errors are calculated using the jackknife method as described later. In linear regression, the standard error of regression parameter estimates is estimated using parametric methods, and \(N - 2 \) degrees of freedom is used. In our research and validation against other software that compute Deming regression, we found that some use \(N - 2 \) degrees of freedom (e.g. R, “MCR” package) while others use \(N - 1 \) degrees of freedom (e.g. MedCalc, SAS Macro by Allison Deal). CLSI (Clinical and Laboratory Standards Institute) EP09-A3, Appendix H indicates that \(N - 2 \) degrees of freedom should be used for the jackknife SE estimates, so \(N - 2 \) is used as the default in NCSS. The choice is given to allow the user to make the final decision as to what degrees of freedom to use and to allow the user to validate calculations in NCSS against other software. As the sample size increases, the effect of this choice diminishes.

Weighted Deming Regression with Proportional Errors

With \(X_i, Y_i, \bar{X}_i, \bar{Y}_i, x_i, y_i, \varepsilon_i \), and \(\delta_i \) all defined as in simple Deming regression, let \(\lambda \) be the ratio of the two error variances that are assumed proportional to the squares of the average of the true values, such that \(\lambda = \frac{V(\varepsilon_i)}{V(\delta_i)} \) is constant. Using a series of \(N \) paired measurements, \((x_i, y_i) \), the linear relationship is still estimated by the equation

\[\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i, \]

but the sum of squares minimized becomes

\[SS_w = \sum_{i=1}^{N} \left[w_i(x_i - \bar{X}_i)^2 + \lambda w_i(y_i - \bar{Y}_i)^2 \right]. \]

The weights, \(w_i \), are

\[w_i = \frac{1}{\left[X_i + \lambda Y_i \right]^2} \]

and estimated as

\[\hat{w}_i = \frac{1}{\left[x_i + \lambda y_i \right]^2} \]

Note that these weights are different from those outlined in Linnet K. (1990). Linnet K. (1993) suggests that these weights are probably more precise than the simple average.
Deming Regression

Coefficient Estimates

The slope estimate, \(b_1 \), is computed as

\[
br_1 = \frac{(\lambda q_w - u_w) + \sqrt{(u_w - \lambda q_w)^2 + 4\lambda p_w^2}}{2\lambda p_w}
\]

with

\[
\begin{align*}
u_w &= \sum_{i=1}^{N} \hat{w}_i (x_i - \bar{x}_w)^2, \\
q_w &= \sum_{i=1}^{N} \hat{w}_i (y_i - \bar{y}_w)^2, \\
p_w &= \sum_{i=1}^{N} \hat{w}_i (x_i - \bar{x}_w)(y_i - \bar{y}_w), \\
\bar{x}_w &= \sum_{i=1}^{N} \hat{w}_i x_i / \sum_{i=1}^{N} \hat{w}_i, \\
\bar{y}_w &= \sum_{i=1}^{N} \hat{w}_i y_i / \sum_{i=1}^{N} \hat{w}_i.
\end{align*}
\]

The intercept estimate, \(b_0 \), is computed as

\[
b_0 = \bar{y}_w - b_1 \bar{x}_w.
\]

Confidence Intervals

100(1 - \(\alpha \))% confidence intervals for the slope and intercept are computed the same as in the simple case as

\[
b_1 \pm t_{1-\alpha/2,N-2}SE(b_1)
\]

and

\[
b_0 \pm t_{1-\alpha/2,N-2}SE(b_0),
\]

respectively. Note that some programs (e.g. MedCalc, SAS Macro by Allison Deal) use \(N - 1 \) instead of \(N - 2 \) degrees of freedom. The standard errors are calculated using the jackknife method as described later.

True Value Estimates

Estimated true values are computed using the estimated regression coefficients and \(\lambda \) as

\[
\begin{align*}
\tilde{x}_i &= x_i + \frac{\lambda b_1 d_i}{(1 + \lambda b_1^2)} \\
\tilde{y}_i &= y_i - \frac{d_i}{(1 + \lambda b_1^2)}
\end{align*}
\]

with

\[
d_i = y_i - (b_0 + b_1 x_i).
\]

Iterative Re-weighting to Yield Better Estimates

To obtain better estimates of the true values \(X_i \) and \(Y_i \), and therefore better estimates of the weights and coefficients, an iterative procedure is employed. First, initial estimates of the model coefficients are calculated without using weights, or equivalently with all weights equal to one and estimated true values are computed. The process is then iterated by substituting \(\tilde{x}_i \) for \(x_i \) and \(\tilde{y}_i \) for \(y_i \) and recalculating the weights and regression coefficients. If \(\lambda \) is being estimated from the data, then new estimates for \(\lambda \) are generated with each iteration. The process terminates when the difference between coefficient estimates in subsequent iterations falls below a threshold value.
Hypothesis Tests
The null hypothesis of identity (i.e. that $Y = X$), is tested by two individual tests. The first tests that the slope is equal to one:

$$H_0: \beta_1 = 1 \text{ vs. } H_1: \beta_1 \neq 1,$$

with t-statistic

$$t = \frac{(b_1 - 1)}{SE(b_1)},$$

where b_1 and $SE(b_1)$ are estimated using the weighted method.

The second is a test of location difference, independent of the test of the slope:

$$H_0: \bar{Y} - \bar{X} = 0 \text{ vs. } H_1: \bar{Y} - \bar{X} \neq 0,$$

with t-statistic

$$t = \frac{(\bar{y}_w - \bar{x}_w)}{SE(\bar{y}_w - \bar{x}_w)}.$$

The standard errors are calculated using the jackknife method as described later. In linear regression, the standard error of regression parameter estimates is estimated using parametric methods, and $N - 2$ degrees of freedom is used. In our research and validation against other software that compute Deming regression, we found that some use $N - 2$ degrees of freedom (e.g. R, “MCR” package) while others use $N - 1$ degrees of freedom (e.g. MedCalc, SAS Macro by Allison Deal). CLSI (Clinical and Laboratory Standards Institute) EP09-A3, Appendix H indicates that $N - 2$ degrees of freedom should be used for the jackknife SE estimates, so $N - 2$ is used as the default in NCSS. The choice is given to allow the user to make the final decision as to what degrees of freedom to use and to allow the user to validate calculations in NCSS against other software. As the sample size increases, the effect of this choice diminishes.

Jackknife Standard Error Estimation
The standard errors (SE) for all estimates (coefficients, predicted values, etc.) in the Deming regression procedure are calculated using the jackknife method. The jackknife is a non-parametric technique and has been shown to perform adequately in the case of Deming regression (see Linnet K. (1990)).

Suppose you have a parameter called θ (θ could be the intercept, slope, a predicted value, the difference in location parameters, etc.) and wish to compute the standard error of $\hat{\theta}$, the estimate of θ. The jackknife estimate for the standard error of $\hat{\theta}$, i.e. $SE(\hat{\theta})$, is computed as follows:

1. Compute $\bar{\theta}$, the estimate of θ using all of the available data.
2. Compute $\hat{\theta}_{-i}$, the estimate of θ based on the data subset that does not contain the pair (x_i, y_i), $i = 1, \ldots, N$. Therefore, the end result is that we’ll have N estimates of θ, each with a different data pair left out.
3. Compute the ith pseudovariate, $\hat{\theta}^*_i$, $i = 1, \ldots, N$, as

$$\hat{\theta}^*_i = N\bar{\theta} - (N - 1)\hat{\theta}_{-i}.$$

4. Compute $\hat{\theta}_{jackknife}$, the jackknife estimator as

$$\hat{\theta}_{jackknife} = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}^*_i.$$
5. Finally, the jackknifed estimate for the variance of $\hat{\theta}$ is calculated as

$$V_j(\hat{\theta}) = \sum_{i=1}^{N} \frac{(\hat{\theta}_i^* - \hat{\theta}_{jackknife})^2}{(N - 1)},$$

and the jackknifed estimate for the standard error of $\hat{\theta}$ is calculated as

$$SE(\hat{\theta}) = \sqrt{\frac{V_j(\hat{\theta})}{N}}.$$

Residuals

The residuals can be used to check the Deming regression assumptions. There are 4 different types of residuals that are computed: X Residuals, Y Residuals, Raw Y Residuals, and Optimized Residuals. They are calculated as

- **X Residual**

 $$X Residual = d_i^X = x_i - \hat{x}_i = x_i - (\hat{\gamma}_i - b_0)/b_1,$$

- **Y Residual**

 $$Y Residual = d_i^Y = y_i - \hat{\gamma}_i = y_i - (b_0 + b_1\hat{x}_i),$$

- **Raw Y Residual**

 $$Raw Y Residual = d_i = y_i - \hat{\gamma}_i|x_i = y_i - (b_0 + b_1x_i),$$

- **Optimized Residual**

 $$Optimized Residual = d_i^{opt} = sign(d_i)\sqrt{\hat{\omega}_i(d_i^X)^2 + \hat{\omega}_i\lambda(d_i^Y)^2}.$$

The optimized residuals correspond to the distances from the points (x_i, y_i) to the estimated line at an angle determined by λ, which distances are minimized by Deming regression. The weights, $\hat{\omega}_i$, are all equal to one in the case of simple Deming regression.

Predicted Values for Y at a Given X

The predicted value of Y for a given value of X is

$$\hat{Y} = b_0 + b_1X,$$

with 100$(1 - \alpha)$% confidence interval

$$\hat{Y} \pm t_{1-\alpha/2,N-2}SE(\hat{Y}).$$

The standard error is calculated using the jackknife method as described above.
Procedure Options

This section describes the options available in this procedure.

Variables Tab

This panel specifies the variables and estimation parameters used in the analysis.

Y, X Variable

Y, X Measurement Error

Specify how to input the measurement error. The number of data variables required depends on this choice.

There are two choices available:

- **Known SD, Variance, or COV**
 The measurement error is assumed to be known. The measurement error can be entered as a Standard Deviation, Variance, or Coefficient of Variation. This option requires you to input only one data variable.

- **Unknown (Estimate from Multiple Measurements)**
 The measurement error is unknown and must be estimated from two or more columns of data. This option requires you to input at least two data variables.

Known Measurement Error Input (Displayed if Measurement Error = Known)

Select the type of input you would like to use to specify the measurement error. The choices are:

- **Standard Deviation (SD)**
 Input measurement error as standard deviation.
 \[SD = \sqrt{Variance} \]

- **Variance**
 Input measurement error as variance.
 \[Variance = SD^2 \]

- **Coefficient of Variation (COV)**
 Input measurement error as coefficient of variation.
 \[COV = \frac{SD}{Mean} \]

Standard Deviation Value (Displayed if Known Measurement Error Input = Standard Deviation (SD))

The value for the measurement error entered as a Standard Deviation. The error ratio is computed using this value.

Variance Value (Displayed if Known Measurement Error Input = Variance)

The value for the measurement error entered as a Variance. The error ratio is computed using this value.

Coefficient of Variation Value (Displayed if Known Measurement Error Input = Coefficient of Variation (COV))

The value for the measurement error entered as a Coefficient of Variation. The error ratio is computed using this value.
Deming Regression

Y, X Variable *(Displayed if Measurement Error = Known)*

Specify a single data column to be used for the variable. The Measurement Error is assumed to be known and must be specified separately.

Y, X Variables *(Displayed if Measurement Error = Unknown)*

Specify two or more columns of data to be used for the variable. The variable measurement error will be estimated from the data in these columns. The average value for each row will be used to calculate the Deming regression.

You can enter the column names or numbers directly, or click the button on the right to display a Column Selection window that will let you select the columns from a list.

For this input type, the data for each replicate is in a separate column. The number of values in each column should be the same since each row represents a subject.

Missing Values

Rows are removed from analysis only if the data are missing in all columns. Partial data is allowed.

Grouping Variable (Optional)

Grouping Variable

Enter a single categorical grouping variable. The values of this variable indicate which category each subject belongs in. Values may be text or numeric. The grouping variable is optional.

A separate Deming regression will be performed for each group.

Estimation

Deming Regression Type

Choose the type of Deming regression to perform. In both cases, the standard errors are estimated using the jackknife procedure. Use the Difference vs. Average plot and the residual plots to determine if the errors are constant and/or proportional. The choices are:

- **Simple**

 Compute regular, unweighted Deming regression. This method should be used when the errors for the two variables are constant.

- **Weighted**

 Compute weighted Deming regression. This should be used when the errors for the two methods are proportional but not necessarily constant.

Jackknife Degrees of Freedom

Select the number of degrees of freedom to use for the T-distribution when computing confidence intervals and hypothesis tests about regression coefficients and predicted values.

In linear regression, the standard error of regression parameter estimates is estimated using parametric methods, and \(N - 2 \) degrees of freedom is used. In Deming regression, the jackknife method is used to calculate the standard error of regression parameter estimates. In our research and validation against other software that compute Deming regression, we found that some use \(N - 2 \) degrees of freedom (e.g. R, “MCR” package) while others use \(N - 1 \) degrees of freedom (e.g. MedCalc, SAS Macro by Allison Deal). CLSI (Clinical and Laboratory Standards Institute) EP09-A3, Appendix H indicates that \(N - 2 \) degrees of freedom should be used for the jackknife SE estimates, so \(N - 2 \) is used as the default in NCSS. The choice is given to allow the user to make the final decision as to what degrees of freedom to use and to allow the user to validate calculations in NCSS against other software. As the sample size increases, the effect of this choice diminishes.
Confidence Level
This confidence level, entered as a percentage, is used in the calculation of confidence intervals for regression coefficients and predicted values. Typical confidence levels are 90%, 95%, and 99%, with 95% being the most common.

Range: 0 < Confidence Level < 100.

Max Iterations (Displayed if Deming Regression Type = Weighted)
This sets the maximum number of iterations before the weighted Deming regression re-estimation algorithm is aborted. The estimates usually converge within 3 or 4 iterations. We recommend you set this option to 100.

Convergence Zero (Displayed if Deming Regression Type = Weighted)
This cutoff value is used by the weighted Deming regression re-estimation algorithm to decide when to terminate. Once the difference in parameter estimates between successive iterations is less than this value, convergence is reached and the algorithm terminates. We recommend you set this option to 1E-6 (i.e. 0.000001).

Reports Tab
This tab controls which statistical reports are displayed in the output.

Select Reports – Summaries

Run Summary, Descriptive Statistics
Each of these options specifies whether the indicated report is displayed.

Select Reports – Estimation

Regression Coefficient Estimation, Hypothesis Test of Y = X
Each of these options specifies whether the indicated report is displayed.

Individual Test Alpha
This is the significance level used in each individual hypothesis test associated with the overall hypothesis that \(Y = X \). The overall test of \(Y = X \) consists of two individual hypotheses that test whether slope = 1 and whether there is a location difference. Because two tests are being conducted simultaneously, it is appropriate to use the Bonferroni adjustment (i.e. divide alpha by 2) to achieve an overall expected alpha.

Because the overall hypothesis that \(Y = X \) consists of two individual hypotheses, we recommend that you set this value to 0.025 for an overall alpha level of 0.05 for the two tests together.

Select Reports – Row-by-Row Lists

Data List ... Predicted Y’s at Specific X’s
Indicate whether to display these reports. Note that since these reports provide results for each row, they may be too long for normal use when requested on large databases.

Predict Y at These X Values
Enter an optional list of X values at which to report the predicted values of Y and corresponding confidence intervals. You can enter a single number or a list of numbers. The list can be separated with commas or spaces. The list can also be of the form “XX:YY(ZZ)”, which means \(XX \) to \(YY \) by \(ZZ \).
Report Options
The following options control the format of the reports.

Variable Names
Specify whether to use variable names, variable labels, or both to label output reports. In this discussion, the variables are the columns of the data table.

- **Names**
 Variable names are the column headings that appear on the data table. They may be modified by clicking the Column Info button on the Data window or by clicking the right mouse button while the mouse is pointing to the column heading.

- **Labels**
 This refers to the optional labels that may be specified for each column. Clicking the Column Info button on the Data window allows you to enter them.

- **Both**
 Both the variable names and labels are displayed.

Comments
1. Most reports are formatted to receive about 12 characters for variable names.
2. Variable Names cannot contain blanks or math symbols (like + - * / . ,), but variable labels can.

Value Labels
Value Labels are used to make reports more legible by assigning meaningful labels to numbers and codes.

The options are

- **Data Values**
 All data are displayed in their original format, regardless of whether a value label has been set or not.

- **Value Labels**
 All values of variables that have a value label variable designated are converted to their corresponding value label when they are output. This does not modify their value during computation.

- **Both**
 Both data value and value label are displayed.

Example
A variable named GENDER (used as a grouping variable) contains 1’s and 2’s. By specifying a value label for GENDER, the report can display “Male” instead of 1 and “Female” instead of 2. This option specifies whether (and how) to use the value labels.
Report Options – Decimal Places

Item Decimal Places
These decimal options allow the user to specify the number of decimal places for items in the output. Your choice here will not affect calculations; it will only affect the format of the output.

- Auto
 If one of the “Auto” options is selected, the ending zero digits are not shown. For example, if “Auto (0 to 7)” is chosen,

 0.0500 is displayed as 0.05
 1.314583689 is displayed as 1.314584

 The output formatting system is not designed to accommodate “Auto (0 to 13)”, and if chosen, this will likely lead to lines that run on to a second line. This option is included, however, for the rare case when a very large number of decimals is needed.

Plots Tab
These options specify which plots are produced as well as the plot format.

Deming Regression Plots

Deming Regression Scatter Plot, Difference vs. Average Plot
Indicate whether to display these plots. Click the plot format button to change the plot settings.

Show Combined Plot (If Grouping Variable Present)
If you have a grouping variable present, this option allows you to plot all groups on one plot for comparison. Deming regression is still performed on each group separately.

Residual Diagnostic Plots

Scatter Plot, Histogram, Normal Probability Plot
Indicate whether to display these plots. Click the plot format button to change the plot settings.

Residual Diagnostic Plots – Residuals Plotted…

Scatter Plot, Histogram, Normal Probability Plot
Indicate whether to display a scatter plot, histogram, and/or normal probability plot with this value.

Residual Diagnostic Plots – Values on the X-Axis…

Scatter Plot, Histogram, Normal Probability Plot
Indicate whether to display a residual scatter plot with this value on the X-Axis.
Storage Tab

These options let you specify if, and where on the data table, various statistics are stored.

Warning: Any data already in these variables are replaced by the new data. Be careful not to specify variables that contain important data.

Data Storage Options

Storage Option

This option controls whether the values indicated below are stored on the database when the procedure is run.

- **Do not store data**
 No data are stored even if they are checked.

- **Store in empty columns only**
 The values are stored in empty columns only. Columns containing data are not used for data storage, so no data can be lost.

- **Store in designated columns**
 Beginning at the First Storage Variable, the values are stored in this column and those to the right. If a column contains data, the data are replaced by the storage values. Care must be used with this option because it cannot be undone.

Store First Variable In

The first item is stored in this variable. Each additional item that is checked is stored in the variables immediately to the right of this variable.

Leave this value blank if you want the data storage to begin in the first blank column on the right-hand side of the data.

Warning: any existing data in these variables is automatically replaced, so be careful.

Data Storage Options – Select Items to Store

Predicted Y’s ... Weights

Indicate whether to store these row-by-row values, beginning at the variable indicated by the Store First Item In option.
Example 1 – Simple Deming Regression with Known Measurement Error

This section presents an example of how to run a Deming regression analysis of the data in the *DemingReg1* dataset. In this example, we will run a Deming regression where the measurement errors are assumed known for both Y and X with Variance(Y) = 0.008 and Variance(X) = 0.032 (Error ratio: \(\lambda = 4.0 \)). Predicted values of Y are wanted at X values between 6 and 10. In this example we’ll add a simple linear regression line to the plot to see the difference between the two methods.

You may follow along here by making the appropriate entries or load the completed template Example 1 by clicking on Open Example Template from the File menu of the procedure window.

1 Open the DemingReg1 example dataset.
- From the File menu of the NCSS Data window, select **Open Example Data**.
- Click on the file **DemingReg1.NCSS**.
- Click **Open**.

2 Open the Deming Regression procedure window.
- Using the Analysis menu or the Procedure Navigator, find and select the **Deming Regression** procedure.
- On the menus, select **File**, then **New Template**. This will fill the procedure with the default template.

3 Specify the variables.
- Select the **Variables** tab.
- Leave **Y Measurement Error Input Type** as Known SD, Variance, or COV.
- Change the **Y Known Measurement Error Input** to Variance.
- For the **Y Variance Value**, enter 0.008.
- For **Y Variable**, enter Y.
- Leave **X Measurement Error Input Type** as Known SD, Variance, or COV.
- Change the **X Known Measurement Error Input** to Variance.
- For the **X Variance Value**, enter 0.032.
- For **X Variable**, enter X.
- Leave the **Grouping Variable** blank and **Estimation** options at their default values.

4 Specify the reports.
- Select the **Reports** tab.
- In addition to the reports already selected, check **Data List**, **Residuals**, **Predicted Y’s at Data X’s**, and **Predicted Y’s at Specific X’s**.
- For the **values of X at which to predict Y**, enter 6 7 8 9 10.
- Leave all other report options at their default values.

5 Specify the plots.
- Select the **Plots** tab.
- Click on the **Deming Regression Scatter Plot format button**.
- Click the **More Lines** tab and check **Regression Line**.
- Click **OK** to save the plot settings.

6 Run the procedure.
- From the Run menu, select **Run Procedure**. Alternatively, just click the green Run button.
Deming Regression Scatter Plot

The plot shows the data, the Deming regression line, and associated confidence interval bounds in red. The black dashed line represents the 45° $Y = X$ line. The Deming regression line has a slope very nearly equal to one (1.001194 to be exact). The black line is the simple linear regression line. Notice that it is not as steep as the Deming regression line indicating that simple linear regression underestimates the slope when not taking into account the measurement error.

Run Summary Report

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Measurement Error</td>
<td>Known</td>
<td>Rows Processed</td>
<td>10</td>
</tr>
<tr>
<td>Y Variable</td>
<td>Y</td>
<td>Rows with Missing Values</td>
<td>0</td>
</tr>
<tr>
<td>X Measurement Error</td>
<td>Known</td>
<td>Rows Used in Estimation</td>
<td>10</td>
</tr>
<tr>
<td>X Variable</td>
<td>X</td>
<td>Error Variance Ratio (λ)</td>
<td>4.00000</td>
</tr>
<tr>
<td>Deming Regression Type</td>
<td>Simple</td>
<td>Y Error Variance</td>
<td>0.00800</td>
</tr>
<tr>
<td>SE Estimation</td>
<td>Jackknife</td>
<td>X Error Variance</td>
<td>0.03200</td>
</tr>
<tr>
<td>Intercept</td>
<td>N-2</td>
<td>Y Coefficient of Variation</td>
<td>0.01107</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.08974</td>
<td>X Coefficient of Variation</td>
<td>0.02192</td>
</tr>
<tr>
<td></td>
<td>1.00119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This report gives a summary of the input and various descriptive measures about the Deming regression.
Descriptive Statistics Report

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>N</th>
<th>Mean</th>
<th>Error SD</th>
<th>Error Variance</th>
<th>Error COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y: Y</td>
<td>10</td>
<td>8.08</td>
<td>0.08944</td>
<td>0.00800</td>
<td>0.01107</td>
</tr>
<tr>
<td>X: X</td>
<td>10</td>
<td>8.16</td>
<td>0.17889</td>
<td>0.03200</td>
<td>0.02192</td>
</tr>
</tbody>
</table>

Error Variance Ratio (λ) = 4.00000

This report gives descriptive statistics about the variables used in the regression.

Regression Coefficient Estimation Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient b(i)</th>
<th>Jackknife Standard Error SE[b(i)]</th>
<th>Lower 95% Conf. Limit of β(i)</th>
<th>Upper 95% Conf. Limit of β(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.08974</td>
<td>1.72199</td>
<td>-4.06065</td>
<td>3.88117</td>
</tr>
<tr>
<td>Slope (X)</td>
<td>1.00119</td>
<td>0.18718</td>
<td>0.56956</td>
<td>1.43283</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.

Estimated Model

Y = -0.0897448990070444 + 1.00119422781949 * X

This section reports the Deming regression coefficients, along with their standard errors, degrees of freedom, and their confidence limits. The standard errors are calculated using the jackknife method.

The Estimated Model section displays an equation with coefficients that have all available decimals displayed (i.e. full-precision).

Hypothesis Test of Y = X Report

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameter Estimate</th>
<th>Jackknife Standard Error</th>
<th>DF</th>
<th>T-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.025?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0: Slope = 1 vs. H1: Slope ≠ 1</td>
<td>1.00119</td>
<td>0.18718</td>
<td>8</td>
<td>0.06638</td>
<td>0.99507</td>
<td>No</td>
</tr>
<tr>
<td>H0: Mean Y - Mean X = 0 vs. H1: Mean Y - Mean X ≠ 0</td>
<td>-0.08000</td>
<td>0.24846</td>
<td>8</td>
<td>-0.32198</td>
<td>0.75572</td>
<td>No</td>
</tr>
</tbody>
</table>

The section reports the pair of hypothesis tests for the overall hypothesis that Y = X. As expected based on the Deming regression plot, there is no evidence to suggest that the line does not follow the 45° identity line. Each hypothesis is tested at the Bonferroni adjusted value of α = 0.025 because two tests are conducted simultaneously. The standard errors are calculated using the jackknife method.
Data List Report

Data List

| Row | X | Y | Estimate of True X (Xhat) | Estimate of True Y (Yhat) | Predicted Y (Yhat|X) |
|-----|----|-----|----------------------------|---------------------------|-------------------|
| 1 | 7 | 7.9 | 7.78555 | 7.70410 | 6.91861 |
| 2 | 8.3| 8.2 | 8.28388 | 8.20403 | 8.22017 |
| 3 | 10.5| 9.6 | 9.84224 | 9.76424 | 10.42279 |
| 4 | 9 | 9 | 9.06315 | 8.98423 | 8.92100 |
| 5 | 5.1| 6.5 | 6.28607 | 6.20384 | 5.01635 |
| 6 | 8.2| 7.3 | 7.54443 | 7.46370 | 8.12005 |
| 7 | 10.2| 10.2| 10.26201 | 10.18452 | 10.12244 |
| 8 | 10.3| 10.6| 10.60174 | 10.52466 | 10.22256 |
| 9 | 7.1| 6.3 | 6.52542 | 6.44347 | 7.01873 |
| 10 | 5.9| 5.2 | 5.40651 | 5.32322 | 5.81730 |

This section reports the estimated and predicted values for each of the input data points. This report may be quite lengthy if you have a large dataset. You can save these values back to the database using the Storage tab on the procedure window.

Residuals Report

Residuals

| Row | X | Y | X Residual (X-Xhat) | Y Residual (Y-Yhat) | Raw Y Residual (Y-Yhat|X) | Optimized Residual |
|-----|----|-----|---------------------|---------------------|--------------------------|---------------------|
| 1 | 7 | 7.9 | -0.78455 | 0.19590 | 0.98139 | 0.87694 |
| 2 | 8.3| 8.2 | 0.01612 | -0.00403 | -0.02017 | -0.01802 |
| 3 | 10.5| 9.6 | 0.65776 | -0.16424 | -0.82279 | -0.73523 |
| 4 | 9 | 9 | -0.06315 | 0.01577 | 0.07900 | 0.07059 |
| 5 | 5.1| 6.5 | -1.18607 | 0.29616 | 1.48365 | 1.32575 |
| 6 | 8.2| 7.3 | 0.65557 | -0.16370 | -0.82005 | -0.73277 |
| 7 | 10.2| 10.2| -0.06201 | 0.01548 | 0.07756 | 0.06931 |
| 8 | 10.3| 10.6| -0.30174 | 0.07534 | 0.37744 | 0.33727 |
| 9 | 7.1| 6.3 | 0.57458 | -0.14347 | -0.71873 | -0.64224 |
| 10 | 5.9| 5.2 | 0.49349 | -0.12322 | -0.61730 | -0.55160 |

This section reports the residuals for each of the input data points. There are 4 different types of residuals that are reported. This report may be quite lengthy if you have a large dataset. You can save these values back to the database using the Storage tab on the procedure window.

Predicted Y's at Data X's Report

Predicted Y's at Data X's

| Row | X | Predicted Y (Yhat|X) | Jackknife Standard Error | Lower 95% Conf. Limit of Y|X | Upper 95% Conf. Limit of Y|X |
|-----|----|------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| 1 | 7 | 6.91861 | 0.46020 | 5.85739 | 6.97984 |
| 2 | 8.3| 8.22017 | 0.28011 | 7.57424 | 8.86610 |
| 3 | 10.5| 10.42279 | 0.35015 | 9.61535 | 11.23024 |
| 4 | 9 | 8.92100 | 0.23805 | 8.37667 | 9.46533 |
| 5 | 5.1| 5.01635 | 0.78719 | 3.20109 | 6.83160 |
| 6 | 8.2| 8.12005 | 0.29071 | 7.44967 | 8.79043 |
| 7 | 10.2| 10.12244 | 0.31083 | 9.40566 | 10.83921 |
| 8 | 10.3| 10.22256 | 0.32338 | 9.47683 | 10.96828 |
| 9 | 7.1| 7.01873 | 0.44421 | 5.99437 | 8.04309 |
| 10 | 5.9| 5.81730 | 0.64583 | 4.32802 | 7.30658 |

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.
This section reports the predicted values of Y for each of the X data values, along with their standard errors and confidence limits. The standard errors are calculated using the jackknife method. This report may be quite lengthy if you have a large dataset. You can save these values back to the database using the Storage tab on the procedure window.

Predicted Y's at Specific X's Report

<table>
<thead>
<tr>
<th></th>
<th>Predicted Y</th>
<th>Standard Error</th>
<th>Lower 95% Conf. Limit</th>
<th>Upper 95% Conf. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5.91742</td>
<td>0.62843</td>
<td>4.46826</td>
<td>7.36658</td>
</tr>
<tr>
<td>7</td>
<td>6.91861</td>
<td>0.46020</td>
<td>5.85739</td>
<td>7.97984</td>
</tr>
<tr>
<td>8</td>
<td>7.91981</td>
<td>0.31419</td>
<td>7.19528</td>
<td>8.64434</td>
</tr>
<tr>
<td>9</td>
<td>8.92100</td>
<td>0.23605</td>
<td>8.37667</td>
<td>9.46533</td>
</tr>
<tr>
<td>10</td>
<td>9.92220</td>
<td>0.28774</td>
<td>9.25868</td>
<td>10.58572</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.

This section reports the predicted values of Y for each of the X values specified on the Reports tab of the procedure window, along with their standard errors and confidence limits. The standard errors are calculated using the jackknife method. This report may be quite lengthy if you have a large dataset.

Difference vs. Average Plot

This plot shows the differences between X and Y for each data pair versus their averages. Use this plot to help determine whether simple Deming regression is sufficient or whether you should use the weighted approach. When the scatter is constant, like it is here, then simple Deming regression is appropriate. If there is a cone-shaped pattern across the horizontal axis, then you should consider using weighted Deming regression instead.
Residual Diagnostic Plots

The residual diagnostic plots should be used to check the Deming regression assumptions of residual normality. The points in the residual scatter plot should be evenly distributed across the horizontal axis, with no apparent patterns or definite shapes. The points in the normal probability plot should follow closely to the straight line. The histogram is really only useful if you have a sufficient number of residuals, which is clearly not the case here.

You have the option of generating many different kinds of
Example 2 – Simple Deming Regression with Unknown Measurement Error

This section presents an example of how to run a simple Deming regression analysis when the measurement errors for both Y and X are unknown and must be estimated from duplicate data values. This example uses the DemingReg2 dataset.

You may follow along here by making the appropriate entries or load the completed template Example 2 by clicking on Open Example Template from the File menu of the procedure window.

1. Open the DemingReg2 example dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file DemingReg2.NCSS.
 - Click Open.

2. Open the Deming Regression procedure window.
 - Using the Analysis menu or the Procedure Navigator, find and select the Deming Regression procedure.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - Select the Variables tab.
 - Change Y Measurement Error Input Type to Unknown.
 - For Y Variables, enter Y1-Y2.
 - Change X Measurement Error Input Type to Unknown.
 - For X Variables, enter X1-X2.
 - Leave the Grouping Variable blank and Estimation options at their default values.

4. Specify the reports.
 - Leave all report options at their default values.

5. Specify the plots.
 - Select the Plots tab.
 - Uncheck all plots except Deming Regression Scatter Plot.
 - Click on the Deming Regression Scatter Plot format button.
 - Click the More Lines tab and check Regression Line.
 - Click OK to save the plot settings.

6. Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Deming Regression

Output

Run Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Measurement Error</td>
<td>Unknown</td>
<td>Rows Processed</td>
<td>10</td>
</tr>
<tr>
<td>Y Variables</td>
<td>Y1,Y2</td>
<td>Rows with Missing Values</td>
<td>0</td>
</tr>
<tr>
<td>X Measurement Error</td>
<td>Unknown</td>
<td>Rows Used in Estimation</td>
<td>10</td>
</tr>
<tr>
<td>X Variables</td>
<td>X1,X2</td>
<td>Error Variance Ratio (λ)</td>
<td>1.00000</td>
</tr>
<tr>
<td>Deming Regression Type</td>
<td>Simple</td>
<td>Y Error Variance</td>
<td>3.25000</td>
</tr>
<tr>
<td>SE Estimation</td>
<td>Jackknife</td>
<td>X Error Variance</td>
<td>3.25000</td>
</tr>
<tr>
<td>Jackknife DF</td>
<td>N=2</td>
<td>Y Coefficient of Variation</td>
<td>0.02090</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.47179</td>
<td>X Coefficient of Variation</td>
<td>0.01409</td>
</tr>
<tr>
<td>Slope</td>
<td>0.68559</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>N</th>
<th>Mean</th>
<th>Error SD</th>
<th>Error Variance</th>
<th>Error COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y: Y1,Y2</td>
<td>10</td>
<td>86.25</td>
<td>1.80276</td>
<td>3.25000</td>
<td>0.02090</td>
</tr>
<tr>
<td>X: X1,X2</td>
<td>10</td>
<td>127.95</td>
<td>1.80276</td>
<td>3.25000</td>
<td>0.01409</td>
</tr>
</tbody>
</table>

Error Variance Ratio (λ) = 1.00000
Deming Regression

Regression Coefficient Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient $b(i)$</th>
<th>Jackknife Standard Error $SE[b(i)]$</th>
<th>Lower 95% Conf. Limit of $\beta(i)$</th>
<th>Upper 95% Conf. Limit of $\beta(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.47179</td>
<td>7.49434</td>
<td>-18.75378</td>
<td>15.81019</td>
</tr>
<tr>
<td>Slope (X1,X2)</td>
<td>0.68559</td>
<td>0.04981</td>
<td>0.57074</td>
<td>0.80045</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.

Estimated Model

$Y = -1.47179 + 0.68559 * X$

Hypothesis Test of $Y = X$

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameter Test</th>
<th>$b(i)$</th>
<th>$SE[b(i)]$</th>
<th>t</th>
<th>P</th>
<th>Reject H0 at $\alpha = 0.025$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0: Slope = 1 vs. H1: Slope ≠ 1</td>
<td>0.68559</td>
<td>0.04981</td>
<td>8</td>
<td>-6.31245</td>
<td>0.00023</td>
<td>Yes</td>
</tr>
</tbody>
</table>

H0: Mean Y - Mean X = 0 vs. H1: Mean Y - Mean X ≠ 0

<table>
<thead>
<tr>
<th>Test</th>
<th>$b(i)$</th>
<th>$SE[b(i)]$</th>
<th>t</th>
<th>P</th>
<th>Reject H0 at $\alpha = 0.025$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0: Mean Y - Mean X = 0 vs. H1: Mean Y - Mean X ≠ 0</td>
<td>-41.70000</td>
<td>5.80048</td>
<td>8</td>
<td>-7.18906</td>
<td>0.00009</td>
</tr>
</tbody>
</table>

In this case the slope if very different from one (reject H0 with p-value = 0.00023) and the location parameters are not equal (reject H0 with p-value = 0.00009), indicating a systematic difference between the two variables. Interestingly, the simple linear regression line is not too much different from the Deming regression line in this case.

Example 3 – Weighted Deming Regression

This section presents an example of how to run a weighted Deming regression analysis. This example uses the DemingReg3 dataset. In the example, we’ll assume a constant error ratio of 1.

You may follow along here by making the appropriate entries or load the completed template Example 3 by clicking on Open Example Template from the File menu of the procedure window.

1. Open the DemingReg3 example dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file DemingReg3.NCSS.
 - Click Open.

2. Open the Deming Regression procedure window.
 - Using the Analysis menu or the Procedure Navigator, find and select the Deming Regression procedure.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - Select the Variables tab.
 - For Y Variable, enter Y.
 - For X Variable, enter X.
 - Change Deming Regression Type to Weighted.
 - Leave all other Variable and Estimation options at their default settings.

4. Specify the reports and plots.
 - Leave all report and plot options at their default settings.

5. Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Output

Run Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Measurement Error</td>
<td>Known</td>
<td>Rows Processed</td>
<td>100</td>
</tr>
<tr>
<td>Y Variable</td>
<td>Y</td>
<td>Rows with Missing Values</td>
<td>0</td>
</tr>
<tr>
<td>X Measurement Error</td>
<td>Known</td>
<td>Rows Used in Estimation</td>
<td>100</td>
</tr>
<tr>
<td>X Variable</td>
<td>X</td>
<td>Error Variance Ratio (λ)</td>
<td>1.00000</td>
</tr>
<tr>
<td>Deming Regression Type</td>
<td>Weighted</td>
<td>Y Error Variance</td>
<td>1.00000</td>
</tr>
<tr>
<td>SE Estimation</td>
<td>Jackknife</td>
<td>X Error Variance</td>
<td>1.00000</td>
</tr>
<tr>
<td>Jackknife DF</td>
<td>N-2</td>
<td>Y Coefficient of Variation</td>
<td>0.00209</td>
</tr>
<tr>
<td>Iterations</td>
<td>3 of 100</td>
<td>X Coefficient of Variation</td>
<td>0.00212</td>
</tr>
<tr>
<td>Convergence</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.80805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.01434</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>N</th>
<th>Mean</th>
<th>Error SD</th>
<th>Error Variance</th>
<th>Error COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y: Y</td>
<td>100</td>
<td>477.75</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.00209</td>
</tr>
<tr>
<td>X: X</td>
<td>100</td>
<td>471.76</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.00212</td>
</tr>
</tbody>
</table>

Error Variance Ratio (λ) = 1.00000
Deming Regression

Regression Coefficient Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient b(i)</th>
<th>Jackknife Standard Error SE[b(i)]</th>
<th>Lower 95% Conf. Limit of β(i)</th>
<th>Upper 95% Conf. Limit of β(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.80805</td>
<td>1.42057</td>
<td>-3.62713</td>
<td>2.01103</td>
</tr>
<tr>
<td>Slope (X)</td>
<td>1.01434</td>
<td>0.00847</td>
<td>0.99753</td>
<td>1.03116</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 1.98447, with N-2 = 98 degrees of freedom.

Estimated Model

Y = -0.808049379959723 + 1.01434367011481 * X

Hypothesis Test of Y = X

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameter Estimate</th>
<th>Jackknife Standard Error</th>
<th>DF</th>
<th>T-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.025?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0: Slope = 1 vs. H1: Slope ≠ 1</td>
<td>1.01434</td>
<td>0.00847</td>
<td>98</td>
<td>1.69317</td>
<td>0.09360</td>
<td>No</td>
</tr>
</tbody>
</table>

H0: Mean Y - Mean X = 0 vs. H1: Mean Y - Mean X ≠ 0

H0: Mean Y - Mean X = 0

H1: Mean Y - Mean X ≠ 0

 Difference vs. Average Plot

Plot of Difference (X - Y) vs. Average ((X + Y)/2)
The cone-shaped pattern in the Difference vs. Average plot indicates the need for weighted Deming regression. The proportional increase in standard deviation is also apparent on the Deming regression scatter plot. The results indicate that the regression line does not differ significantly from unity.
Example 4 – Simple Deming Regression with a Grouping Variable

This section presents an example of how to run a simple Deming regression analysis with a grouping variable. This example uses the DemingReg4 dataset. In the example, we’ll assume a constant error ratio of 1.

You may follow along here by making the appropriate entries or load the completed template Example 4 by clicking on Open Example Template from the File menu of the procedure window.

1. Open the DemingReg4 example dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file DemingReg4.NCSS.
 - Click Open.

2. Open the Deming Regression procedure window.
 - Using the Analysis menu or the Procedure Navigator, find and select the Deming Regression procedure.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - Select the Variables tab.
 - For Y Variable, enter Y.
 - For X Variable, enter X.
 - For Grouping Variable, enter Group.
 - Leave all other Variable and Estimation options at their default settings.

4. Specify the reports.
 - Uncheck all reports except Regression Coefficient Estimation.

5. Specify the plots.
 - Uncheck all plots except Deming Regression Scatter Plot.
 - Leave Show Combined Plot checked.

6. Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Combined Deming Regression Scatter Plot

Deming Regression Scatter Plot for Group = "A"
Deming Regression

Regression Coefficient Estimation for Group = "A"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient</th>
<th>Jackknife Standard Error</th>
<th>Lower 95% Conf. Limit</th>
<th>Upper 95% Conf. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.77237</td>
<td>7.54389</td>
<td>-9.39564</td>
<td>20.94037</td>
</tr>
<tr>
<td>Slope (X)</td>
<td>0.94099</td>
<td>0.01413</td>
<td>0.91258</td>
<td>0.96940</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.01063, with N-2 = 48 degrees of freedom.

Estimated Model

\[Y = 5.77236644152418 + 0.940988919637653 \times X \]

Deming Regression Scatter Plot for Group = "B"

Regression Coefficient Estimation for Group = "B"

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient</th>
<th>Jackknife Standard Error</th>
<th>Lower 95% Conf. Limit</th>
<th>Upper 95% Conf. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>12.58221</td>
<td>7.21137</td>
<td>-1.91722</td>
<td>27.08165</td>
</tr>
<tr>
<td>Slope (X)</td>
<td>0.79275</td>
<td>0.01431</td>
<td>0.76398</td>
<td>0.82151</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.01063, with N-2 = 48 degrees of freedom.

Estimated Model

\[Y = 12.5822121029879 + 0.792747665759649 \times X \]

Separate regressions are performed for each group. The combined plot displays both results on a single graph. Here we can see that group “B” deviates more from the unity line than group “A”. After the combined plot, the results are given separately for each group.
Example 5 – Validation of Simple Deming Regression using R ("mcr" package by Manuilova E. et al. (2014))

This section uses the data from Example 1, DemingReg1, to validate Simple Deming Regression using R, with the "mcr" package (version 1.2.1) created by Manuilova, E. et al. (2014). Again suppose that the measurement errors are known for both Y and X with Variance(Y) = 0.008 and Variance(X) = 0.032 (Error ratio: $\lambda = 4.0$). Furthermore, recall that the "mcr" package in R uses $N - 2$ degrees of freedom, the default in NCSS.

The R script to perform this Deming regression with the "mcr" package is:

```r
library(mcr)
X=c(7,8.3,10.5,9,5.1,8.2,10.2,10.3,7.1,5.9)
Y=c(7.9,8.2,9.6,9,6.5,7.3,10.2,10.6,6.3,5.2)
model=mcreg(X,Y,error.ratio=4,alpha=0.05,method.reg="Deming",method.ci="jackknife")
printSummary(model)
```

This script generates the following results in R:

```plaintext
DEMING REGRESSION FIT:

<table>
<thead>
<tr>
<th>EST</th>
<th>SE</th>
<th>LCI</th>
<th>UCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0897449</td>
<td>1.7219874</td>
<td>-4.060655</td>
</tr>
<tr>
<td>Slope</td>
<td>1.0011942</td>
<td>0.1871771</td>
<td>0.569563</td>
</tr>
</tbody>
</table>
```

You may follow along here by making the appropriate entries or load the completed template Example 5 by clicking on Open Example Template from the File menu of the procedure window.

1. **Open the DemingReg1 example dataset.**
 - From the File menu of the NCSS Data window, select **Open Example Data**.
 - Click on the file **DemingReg1.NCSS**.
 - Click **Open**.

2. **Open the Deming Regression procedure window.**
 - Using the Analysis menu or the Procedure Navigator, find and select the **Deming Regression** procedure.
 - On the menus, select **File**, then **New Template**. This will fill the procedure with the default template.

3. **Specify the variables.**
 - Select the **Variables** tab.
 - Leave **Y Measurement Error Input Type** as **Known SD, Variance, or COV**.
 - Change the **Y Known Measurement Error Input** to **Variance**.
 - For the **Y Variance Value**, enter 0.008.
 - For **Y Variable**, enter Y.
 - Leave the **X Measurement Error Input Type** as **Known SD, Variance, or COV**.
 - Change the **X Known Measurement Error Input** to **Variance**.
 - For the **X Variance Value**, enter 0.032.
 - For **X Variable**, enter X.
 - Leave the **Grouping Variable** blank and the other **Estimation** options at their **default values**.
4 Specify the reports.
 • Uncheck all reports except **Regression Coefficient Estimation**.
 • Change the decimal places for Betas to 7.
 • Change the decimal places for SD, SE, Variance, COV to 7.

5 Specify the plots.
 • Uncheck all plots.

6 Run the procedure.
 • From the Run menu, select **Run Procedure**. Alternatively, just click the green Run button.

Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regression Coefficient</th>
<th>Jackknife Standard Error</th>
<th>Lower 95% Conf. Limit of β(i)</th>
<th>Upper 95% Conf. Limit of β(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.0897449</td>
<td>1.7219874</td>
<td>-4.0606550</td>
<td>3.8811652</td>
</tr>
<tr>
<td>Slope (X)</td>
<td>1.0011942</td>
<td>0.1871771</td>
<td>0.5695632</td>
<td>1.4328253</td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.

Estimated Model

\[Y = -0.0897448990070444 + 1.00119422781949 \times X \]

All of the Deming regression coefficient output from NCSS matches the R output exactly.
Example 6 – Validation of Weighted Deming Regression using R ("mcr" package by Manuilova E. et al. (2014))

This section uses the data from Example 1, DemingReg1, to validate Weighted Deming Regression using R, with the “mcr” package (version 1.2.1) created by Manuilova, E. et al. (2014). Again suppose that the measurement errors are known for both Y and X with \(\text{Variance}(Y) = 0.008 \) and \(\text{Variance}(X) = 0.032 \) (Error ratio: \(\lambda = 4.0 \)). Furthermore, recall that the “mcr” package in R uses \(N - 2 \) degrees of freedom, the default in NCSS.

The R script to perform this Deming regression with the “mcr” package is:

```r
library(mcr)
X=c(7,8.3,10.5,9,5.1,8.2,10.2,10.3,7.1,5.9)
Y=c(7.9,8.2,9.6,9,6.5,7.3,10.2,10.6,6.3,5.2)
model=mcreg(X,Y,error.ratio=4,alpha=0.05,method.reg="WDeming",method.ci="jackknife")
printSummary(model)
```

This script generates the following results in R:

```
WEIGHTED DEMING REGRESSION FIT:

<table>
<thead>
<tr>
<th></th>
<th>EST</th>
<th>SE</th>
<th>LCI</th>
<th>UCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.3283761</td>
<td>1.9743380</td>
<td>-4.8812076</td>
<td>4.224455</td>
</tr>
<tr>
<td>Slope</td>
<td>1.0312280</td>
<td>0.2202037</td>
<td>0.5234374</td>
<td>1.539019</td>
</tr>
</tbody>
</table>
```

You may follow along here by making the appropriate entries or load the completed template Example 6 by clicking on Open Example Template from the File menu of the procedure window.

1. **Open the DemingReg1 example dataset.**
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file DemingReg1.NCSS.
 - Click Open.

2. **Open the Deming Regression procedure window.**
 - Using the Analysis menu or the Procedure Navigator, find and select the Deming Regression procedure.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. **Specify the variables.**
 - Select the Variables tab.
 - Leave Y Measurement Error Input Type as Known SD, Variance, or COV.
 - Change the Y Known Measurement Error Input to Variance.
 - For the Y Variance Value, enter 0.008.
 - For Y Variable, enter Y.
 - Leave X Measurement Error Input Type as Known SD, Variance, or COV.
 - Change the X Known Measurement Error Input to Variance.
 - For the X Variance Value, enter 0.032.
 - For X Variable, enter X.
 - Change Deming Regression Type to Weighted.
 - Leave the Grouping Variable blank and the other Estimation options at their default values.
4 Specify the reports.
 • Uncheck all reports except Regression Coefficient Estimation.
 • Change the decimal places for Betas to 7.
 • Change the decimal places for SD, SE, Variance, COV to 7.

5 Specify the plots.
 • Uncheck all plots.

6 Run the procedure.
 • From the Run menu, select Run Procedure. Alternatively, just click the green Run button.

Output

<table>
<thead>
<tr>
<th>Regression Coefficient Estimation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Regression Coefficient</td>
<td>Jackknife Standard Error</td>
<td>Lower 95% Conf. Limit of β(i)</td>
<td>Upper 95% Conf. Limit of β(i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.3283761</td>
<td>1.9743380</td>
<td>-4.8812076</td>
<td>4.2244554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (X)</td>
<td>1.0312280</td>
<td>0.2202037</td>
<td>0.5234374</td>
<td>1.5390186</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The T-value used to calculate the confidence limits was 2.30600, with N-2 = 8 degrees of freedom.

Estimated Model

\[Y = -0.328376138786767 + 1.03122798996277 * X \]

All of the weighted Deming regression coefficient output from NCSS matches the R output exactly.