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Chapter 320 

Logistic Regression 
(Old Version) 
Introduction 
Logistic regression analysis studies the association between a categorical dependent variable and a set of 
independent (explanatory) variables. The name logistic regression is often used when the dependent variable has 
only two values. The name multiple-group logistic regression (MGLR) is usually reserved for the case when the 
dependent variable has three or more unique values. Multiple-group logistic regression is sometimes called 
multinomial, polytomous, polychotomous, or nominal logistic regression. Although the data structure is different 
from that of multiple regression, the practical use of the procedure is similar.  

Logistic regression competes with discriminant analysis as a method for analyzing discrete response variables. In 
fact, the current feeling among many statisticians is that logistic regression is more versatile and better suited for 
most situations than is discriminant analysis because it does not assume that the independent variables are 
normally distributed, as discriminant analysis does.  

This program computes both regular (binary) logistic regression and multiple-group logistic regression on both 
numeric and categorical variables. It reports on the regression equation as well as the goodness of fit, odds ratios, 
confidence limits, likelihood, and deviance. It performs a comprehensive residual analysis including diagnostic 
residual reports and plots. It can perform a subset selection search, looking for the best regression model with the 
fewest independent variables. It provides confidence intervals on predicted values, and provides ROC curves to 
help determine the best cutoff point for classification. It allows you to validate your results by automatically 
classifying rows that are not used during the analysis. 

The Logit and Logistic Transformations 
In multiple regression, a mathematical model of a set of explanatory variables is used to predict the mean of the 
dependent variable. In logistic regression, a mathematical model of a set of explanatory variables is used to 
predict a transformation of the dependent variable. This is the logit transformation. 

Suppose the numerical values of 0 and 1 are assigned to the two categories of a binary variable. Often, the 0 
represents a negative response and the 1 represents a positive response. The mean of this variable will be the 
proportion of positive responses. Because of this, you might try to model the relationship between the probability 
(proportion) of a positive response and the explanatory variables.  

If p is the proportion of observations with a response of 1, then 1-p is the probability of a response of 0. The ratio 
p/(1-p) is call the odds and the logit is the logarithm of the odds, or just log odds. Mathematically, the logit 
transformation is written 
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The following table shows the logit for various values of p. 

P Logit(P) P Logit(P) 

0.001 -6.907 0.999 6.907 
0.01 -4.595 0.99 4.595 
0.05 -2.944 0.95 2.944 
0.10 -2.197 0.90 2.197 
0.20 -1.386 0.80 1.386 
0.30 -0.847 0.70 0.847 
0.40 -0.405 0.60 0.405 
0.50 0.000 

Note that while p ranges between zero and one, the logit ranges between minus and plus infinity. Also note that 
the zero logit occurs when p is 0.50.  

The logistic transformation is the inverse of the logit transformation. It is written 
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The Log Odds Ratio Transformation 
The difference between two log odds can be used to compare two proportions, such as that of  males versus 
females. Mathematically, this difference is written 
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This difference is often referred to as the log odds ratio. The odds ratio is often used to compare proportions 
across groups. Note that the logistic transformation is closely related to the odds ratio. The reverse relationship is 

( )OR l l
1 2

2
, = e 1 −  

The Logistic Regression and Logit Models 
In multiple-group logistic regression, a discrete dependent variable Y having G unique values ( )2≥G  is regressed 
on a set of p independent variables X X X p1 2, ,..., . Y represents a way of partitioning the population of interest. 
For example, Y may be presence or absence of a disease, condition after surgery, or marital status. Since the 
names of these partitions are arbitrary, refer to them by consecutive numbers. That is, in the discussion below, Y 
will take on the values 1, 2, …, G. In fact, NCSS allows Y to have both numeric and text values, but the notation 
is much simpler if integers are used. 
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In the discussion to follow, let 
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The logistic regression model is given by the G equations 
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Here, pg  is the probability that an individual with values X X X p1 2, ,...,  is in group g. That is, 

( )X|Pr gYpg ==  

Usually 11 ≡X  (that is, an intercept is included),  but this is not necessary. The quantities GPPP ,...,, 21  represent 
the prior probabilities of group membership. If these prior probabilities are assumed equal, then the term 
( )1/ln PPg  becomes zero and drops out. If the priors are not assumed equal, they change the values of the 

intercepts in the logistic regression equation. 

Group one is called the reference group. The regression coefficients p11211 ,,, βββ   for the reference group are 
set to zero. The choice of the reference group is arbitrary. Usually, it is the largest group or a control group to 
which the other groups are to be compared. This leaves G-1 logistic regression equations in the multinomial 
logistic model. 

The s'β  are population regression coefficients that are to be estimated from the data. Their estimates are 
represented by b’s. The s'β  represents the unknown parameters, while the b’s are their estimates. 

These equations are linear in the logits of p. However, in terms of the probabilities, they are nonlinear. The 
corresponding nonlinear equations are  
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since 11X =Βe  because all of its regression coefficients are zero. 

A note on the names of the models. Often, all of these models are referred to as logistic regression models. 
However, when the independent variables are coded as ANOVA type models, they are sometimes called logit 
models. 

A note about the interpretation of eXΒ  may be useful. Using the fact that ( )( )baba eee =+ , ΒXe  may be re-
expressed as follows  

pp

pp

eee

ee
XXX

XXXXB

2211

2211

βββ

βββ





=

= +++

 

This shows that the final value is the product of its individual terms. 
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Solving the Likelihood Equations 
To improve notation, let 
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The likelihood for a sample of N observations is then given by 
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where ygj  is one if the j th  observation is in group g and zero otherwise. 

Using the fact that ygj
g
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1 , the log likelihood, L, is given by 
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Maximum likelihood estimates of the β 's  are found by finding those values that maximize this log likelihood 
equation. This is accomplished by calculating the partial derivatives and setting them to zero. The resulting 
likelihood equations are 
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for g = 1, 2, …, G and k = 1, 2, …, p. Actually, since all coefficients are zero for g = 1, the range of g is from 2 to 
G.  

Because of the nonlinear nature of the parameters, there is no closed-form solution to these equations and they 
must be solved iteratively. The Newton-Raphson method as described in Albert and Harris (1987) is used to solve 
these equations. This method makes use of the information matrix, ( )βI , which is formed from the matrix of 
second partial derivatives. The elements of the information matrix are given by 
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The information matrix is used because the asymptotic covariance matrix of the maximum likelihood estimates is 
equal to the inverse of the information matrix. That is,  

( ) ( ) 1ˆ −= ββ IV  

This covariance matrix is used in the calculation of confidence intervals for the regression coefficients, odds 
ratios, and predicted probabilities. 

Interpretation of Regression Coefficients 
The interpretation of the estimated regression coefficients is not as easy as in multiple regression. In multinomial 
logistic regression, not only is the relationship between X and Y nonlinear, but also, if the dependent variable has 
more than two unique values, there are several regression equations.  

Consider the simple case of a binary dependent variable, Y, and a single independent variable, X. Assume that Y is 
coded so it takes on the values 0 and 1. In this case, the logistic regression equation is 
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Now consider impact of a unit increase in X. The logistic regression equation becomes 
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We can isolate the slope by taking the difference between these two equations. We have 
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That is, β1  is the log of the ratio of the odds at X+1 and X. Removing the logarithm by exponentiating both sides 
gives 

odds
sodde
′

=1β  

The regression coefficient β1  is interpreted as the log of the odds ratio comparing the odds after a one unit 
increase in X to the original odds. Note that, unlike multiple regression, the interpretation of β1  depends on the 
particular value of X since the probability values, the p’s, will vary for different X. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com 
Logistic Regression (Old Version) 

320-6 
 © NCSS, LLC. All Rights Reserved. 

Binary X 
When X can take on only two values, say 0 and 1, the above interpretation becomes even simpler. Since there are 
only two possible values of X, there is a unique interpretation for β1  given by the log of the odds ratio. In 
mathematical terms, the meaning of β1  is then 
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To understand this equation further, consider first what the odds are. The odds is itself the ratio of two 
probabilities, p and 1-p. Consider the following table of odds values for various values of p. Note that 9:1 is read 
‘9 to 1.’ 

Value of p Odds of p 
0.9 9:1 
0.8 4:1 
0.6 1.5:1 
0.5 1:1 
0.4 0.67:1 
0.2 0.25:1 
0.1 0.11:1 
 
Now, using a simple example from horse racing, if one horse has 8:1 odds of winning and a second horse has 4:1 
odds of winning, how do you compare these two horses? One obvious way is to look at the ratio of their odds. 
The first horse has twice the odds of winning as the second.  

Consider a second example of two slow horses whose odds of winning are 0.1:1 and 0.05:1. Here again, their 
odds ratio is 2. The message here: the odds ratio gives a relative number. Even though the first horse is twice as 
likely to win as the first, it is still a long shot. 

To completely understand β1 , we must take the logarithm of the odds ratio. It is difficult to think in terms of 
logarithms. However, we can remember that the log of one is zero. So a positive value of β1  indicates that the 
odds of the numerator are large while a negative value indicates that the odds of the denominator are larger.  

It is probability easiest to think in terms of eβ1  rather than β1 , because eβ1  is the odds ratio while β1  is the log of 
the odds ratio. Both quantities are displayed in the reports. 

Multiple Independent Variables  
When there are multiple independent variables, the interpretation of each regression coefficient becomes more 
difficult, especially if interaction terms are included in the model. In general, however, the regression coefficient 
is interpreted the same as above, except that the caveat ‘holding all other independent variables constant’ must be 
added. That is, can the value of this independent variable be increased by one without changing any of the other 
variables. If it can, then the interpretation is as before. If not, then some type of conditional statement must be 
added that accounts for the values of the other variables. 

Multinomial Dependent Variable  
When the dependent variable has more than two values, there will be more than one regression equation. In fact, 
the number of regression equations is equal to one less than the number of values. This makes interpretation more 
difficult because there are several regression coefficients associated with each independent variable. In this case, 
care must be taken to understand what each regression equation is predicting. Once this is understood, 
interpretation of each of the K-1 regression coefficients for each variable can proceed as above. 
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Consider the following example in which there are two independent variables, X1 and X2, and the dependent 
variable has three groups: A, B, and C.  

Row Y X1 X2 GA GB GC 
1 A 3.2 5.8 1 0 0 
2 A 4.7 6.1 1 0 0 
3 B 2.8 3.5 0 1 0 
4 B 3.3 4.6 0 1 0 
5 B 3.9 5.2 0 1 0 
6 C 4.2 3.7 0 0 1 
7 C 7.3 4.4 0 0 1 
8 C 5.3 5.1 0 0 1 
9 C 6.8 4.5 0 0 1 

Look at the three indicator variables: GA, GB, and GC. They are set to one or zero depending on whether Y takes 
on the corresponding value. Two regression equations will be generated corresponding to any two of these 
indicator variables. The value that is not used is called the reference value. Suppose the reference value is C. The 
two regression equations would be 

22110ln XX
p
p

AAA
C

A βββ ++=







 

and 

22110ln XX
p
p

BBB
C

B βββ ++=







 

The two coefficients for X1 in these equations, βA1  and βB1 , give the change in the log odds of A versus C and B 
versus C for a one unit change in X1, respectively. 
 

Statistical Tests and Confidence Intervals 
Inferences about individual regression coefficients, groups of regression coefficients, goodness-of-fit, mean 
responses, and predictions of group membership of new observations are all of interest. These inference 
procedures can be treated by considering hypothesis tests and/or confidence intervals. The inference procedures in 
logistic regression rely on large sample sizes for accuracy.  

Two procedures are available for testing the significance of one or more independent variables in a logistic 
regression: likelihood ratio tests and Wald tests. Simulation studies usually show that the likelihood ratio test 
performs better than the Wald test. However, the Wald test is still used to test the significance of individual 
regression coefficients because of its ease of calculation.  

These two testing procedures will be described next. 

Likelihood Ratio and Deviance 
The Likelihood Ratio test statistic is -2 times the difference between the log likelihoods of two models, one of 
which is a subset of the other. The distribution of the LR statistic is closely approximated by the chi-square 
distribution for large sample sizes. The degrees of freedom (DF) of the approximating chi-square distribution is 
equal to the difference in the number of regression coefficients in the two models. The test is named as a ratio 
rather than a difference since the difference between two log likelihoods is equal to the log of the ratio of the two 
likelihoods. That is, if Lfull   is the log likelihood of the full model and Lsubset  is the log likelihood of a subset of 
the full model, the likelihood ratio is defined as 
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Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its distribution.  

The likelihood ratio test is the test of choice in logistic regression. Various simulation studies have shown that it is 
more accurate than the Wald test in situations with small to moderate sample sizes. In large samples, it performs 
about the same. Unfortunately, the likelihood ratio test requires more calculations than the Wald test, since it 
requires that two maximum-likelihood models must be fit.  

Deviance 
When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as the deviance. A 
saturated model is one which includes all possible terms (including interactions) so that the predicted values from 
the model equal the original data. The formula for the deviance is 

[ ]SaturatedReduced2 LLD −−=  

The deviance may be calculated directly using the formula for the deviance residuals (discussed below). This 
formula is 
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This expression may be used to calculate the log likelihood of the saturated model without actually fitting a 
saturated model. The formula is 

2ReducedSaturated
DLL +=  

The deviance in logistic regression is analogous to the residual sum of squares in multiple regression. In fact, 
when the deviance is calculated in multiple regression, it is equal to the sum of the squared residuals. Deviance 
residuals, to be discussed later, may be squared and summed as an alternative way to calculate the deviance, D. 

The change in deviance, ∆D , due to excluding (or including) one or more variables is used in logistic regression 
just as the partial F test is used in multiple regression. Many texts use the letter G to represent ∆D , but we have 
already used G to represent the number of groups in Y. Instead of using the F distribution, the distribution of the 
change in deviance is approximated by the chi-square distribution. Note that since the log likelihood for the 
saturated model is common to both deviance values, ∆D  is calculated without actually estimating the saturated 
model. This fact becomes very important during subset selection. The formula for ∆D  for testing the significance 
of the regression coefficient(s) associated with the independent variable X1 is 
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Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity between the change 
in deviance test and the likelihood ratio test, their names are often used interchangeably.  

Wald Test 
The Wald test will be familiar to those who use multiple regression. In multiple regression, the common t-test for 
testing the significance of a particular regression coefficient is a Wald test. In logistic regression, the Wald test is 
calculated in the same manner. The formula for the Wald statistic is 
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where sb j
 is an estimate of the standard error of bj  provided by the square root of the corresponding diagonal 

element of the covariance matrix, ( )β̂V .  

With large sample sizes, the distribution of z j  is closely approximated by the normal distribution. With small and 
moderate sample sizes, the normal approximation is described as ‘adequate.’  

The Wald test is used in NCSS to test the statistical significance of individual regression coefficients. 

Confidence Intervals 
Confidence intervals for the regression coefficients are based on the Wald statistics. The formula for the limits of 
a ( )%1100 α−  two-sided confidence interval is  

jbj szb 2/α±  

R-Squared 
The following discussion summarizes the material on this subject in Hosmer and Lemeshow (1989). In multiple 
regression, 2

MR  represents the proportion of variation in the dependent variable accounted for by the independent 
variables. (The subscript “M” emphasizes that this statistic is for multiple regression.) It is the ratio of the 
regression sum of squares to the total sum of squares. When the residuals from the multiple regression can be 
assumed to be normally distributed, 2

MR  can be calculated as 

0

02

L
LL

R p
M

−
=  

where 0L  is the log likelihood of the intercept-only model and pL  is the log likelihood of the model that includes 

the independent variables. Note that pL  varies from L0  to 0. 2
MR  varies between zero and one. 

This quantity has been proposed for use in logistic regression. Unfortunately, when 2
LR  (the R-squared for logistic 

regression) is calculated using the above formula, it does not necessarily range between zero and one. This is 
because the maximum value of pL  is not always 0 as it is in multiple regression. Instead, the maximum value of 

pL  is SL , the log likelihood of the saturated model. To allow 2
LR  to vary from zero to one, it is calculated as 

follows 

S

p
L LL

LL
R

−

−
=

0

02  

The introduction of SL  into this formula causes a degree of ambiguity with 2
LR  that does not exist with 2

MR . This 
ambiguity is due to the fact that the value of SL  depends on the configuration of independent variables. The 
following example will point out the problem. 

Consider a logistic regression problem consisting of a binary dependent variable and a pool of four independent 
variables. The data for this example are given in the following table. 
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Y X1 X2 X3 X4 
0 1 1 2.3 5.9 
0 1 1 3.6 4.8 
1 1 1 4.1 5.6 
0 1 2 5.3 4.1 
0 1 2 2.8 3.1 
1 1 2 1.9 3.7 
1 1 2 2.5 5.4 
1 2 1 2.3 2.6 
1 2 1 3.9 4.6 
0 2 1 5.6 4.9 
0 2 2 4.2 5.9 
0 2 2 3.8 5.7 
0 2 2 3.1 4.5 
1 2 2 3.2 5.5 
1 2 2 4.5 5.2 

Notice that if only X1 and X2 are included in the model, the dataset may be collapsed because of the number of 
repeats. In this case, the value of SL  will be less than zero. However, if X3 or X4 are used there are no repeats 
and the value of SL  will be zero. Hence, the denominator of 2

LR  depends on which of the independent variables is 
used. This is not the case for 2

MR . This ambiguity comes into play especially during subset selection. It means that 
as you enter and remove independent variables, the target value SL  can change. 

Hosmer and Lemeshow (1989) recommend against the use 2
LR  as a goodness of fit measure. However, we have 

included it in our output because it does provide a comparative measure of the proportion of the log likelihood 
that is accounted for by the model. Just remember than an 2

LR  value of 1.0 indicates that the logistic regression 
model achieves the same log likelihood as the saturated model. However, this does not mean that it fits the data 
perfectly. Instead, it means that it fits the data as well as could be hoped for.  

Residual Diagnostics 
Residuals are the discrepancies between the data values and the their predicted values from the fitted model. A 
residual analysis detects outliers, identifies influential observations, and diagnoses the appropriateness of the 
logistic model. An analysis of the residuals should be conducted before a regression model is used.   

Unfortunately, the residuals are more difficult to define in logistic regression than in regular multiple regression 
because of the nonlinearity of the logistic model and because more than one regression equation is used. The 
discussion that follows provides an introduction to the residuals that are produced by the logistic regression 
procedure. Pregibon (1981) presented this material for the case of the two-group logistic regression. Extensions of 
Pregibon’s results to the multiple-group case are provided in an article by Lesaffre and Albert (1989) and in the 
book by Hosmer and Lemeshow (1989). Lesaffre and Albert provide formulas for these extensions. On the other 
hand, Hosmer and Lemeshow recommend that individual logistic regressions be run in which the each group is 
treated separately. Hence, if you have three groups A, B, and C, you would run group A versus groups B and C, 
group B versus groups A and C, and group C versus groups and A and B. You would conduct a residual analysis 
for each of these regressions using Pregibon’s two-group formulas. In NCSS, we have adopted the approach of 
Hosmer and Lemeshow. 

Data Configuration 
When dealing with residuals, it is important to understand the data configuration. Often, residual formulations are 
presented for the case when each observation has a different combination of values of the independent variables. 
When some observations have identical independent variables or when you have specified a frequency variable, 
these observations are combined to form a single row of data. The N original observations are combined to form J 
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unique rows. The response indicator variables gjy  for the original observations are replaced by two variables: gjw  
and jn . The variable jn  is the total number of observations with this independent variable configuration. The 
variable gjw  is the number of the jn  observations that are in group g.  

NCSS automatically collapses the dataset of N observations into a combined dataset of J rows for analysis. The 
residuals are calculated using this last formula. However, the residuals are reported in the original observation 
order. Thus, if two identical observations have been combined, the residual is shown for each. If corrective action 
needs to be taken because a residual is too large, both observations must be deleted. Also, if you want to calculate 
the deviance or Pearson chi-square from the corresponding residuals, care must be taken that you use only the J 
collapsed rows, not the N original observations. 

Simple Residuals 
Each of the g logistic regression equations can be used to estimate the probabilities that an observation of 
independent variable values given by X j  belongs to the corresponding group. The actual values of these 
probabilities were defined earlier as 

( )jgj gY X|Prob= =π  

The estimated values of these probabilities are called pgj . If the hat symbol is used to represent an estimated 
parameter, then 

gjgjp π̂=  

These estimated probabilities can be compared to the actual probabilities occurring in the database by subtracting 
the two quantities, forming a residual. The actual values were defined as the indicator variables ygj . Thus, simple 
residuals may be defined as 

gjgjgj pyr −=  

Note that, unlike multiple regression, there are g residuals for each observation instead of just one. This makes 
residual analysis much more difficult. If the logistic regression model fits an observation closely, all of its 
residuals will be small. Hence, when gjy  is one, gjp  will be close to one and when gjy  is zero, gjp  will be close 
to zero. 

Unfortunately, the simple residuals have unequal variance equal to ( )gjgjjn ππ −1 , where jn  is the number of 
observations with the same values of the independent variables as observation j. This unequal variance makes 
comparisons among the simple residuals difficult and alternative types of residuals are necessary. 

Pearson Residuals 
One popular alternative to the simple residuals are the Pearson residuals which are so named because they give 
the contribution of each observation to the Pearson chi-square goodness of fit statistic. When the values of the 
independent variables of each observation are unique, the formula this residual is 
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The negative sign is used when 0=gjy  and the positive sign is used when 1=gjy . 

When some of the observations are duplicates and the database has been collapsed (see Data Configuration above) 
the formula is 
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where the plus (minus) is used if jgj nw /  is greater (less) than gjp . Note that this is the formula used by NCSS. 

By definition, the sum of the squared Pearson residuals is the Pearson chi-square goodness of fit statistics. That is, 
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Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced model and the 
saturated model. The deviance is calculated using 
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This formula uses the fact that the saturated model reproduces the original data exactly and that, in these sums, the 
value of 0 ln(0) is defined as 0 and that the ln(1) is also 0. 

The deviance residuals are the square roots of the contribution of each observation to the overall deviance. Thus, 
the formula for the deviance residual is 
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The negative sign is used when 0=gjy  and the positive sign is used when 1=gjy .  

When some of the observations are duplicates and the database has been collapsed (see Data Configuration above) 
the formula is 
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where the plus (minus) is used if jjgREF nw /),(  is greater (less) than jgREFp ),( . Note that this is the formula used 
by NCSS. 

By definition, the sum of the squared deviance residuals is the deviance. That is, 
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Hat Matrix Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. These are often called leverage design points. The larger the value of this statistic, the more the observation 
influences that estimates of the regression coefficients. An observation that is discrepant, but has low leverage, 
should not cause much concern. However, an observation with a large leverage and a large residual should be 
checked very carefully. The use of these hat diagonals is discussed further in the multiple regression chapter.  

The formula for the hat diagonal associated with the jth observation and gth group is   

( ) JjVXXppnh
p

i

p

k
gikkjijgjgjjgj ,,2,1    ,ˆ1

1 1

=−= ∑∑
= =

 

where gikV̂  is the portion of the covariance matrix of the regression coefficients associated with the gth regression 
equation. The interpretation of this diagnostic is not as clear in logistic regression as in multiple regression 
because it involves the predicted values which in turn involve the dependent variable. In multiple regression, the 
hat diagonals only involve the independent variables. 

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

DFBETA 
One way to study the impact of an observation on each regression coefficient is to determine how much that 
coefficient changes when the observation is deleted. The DFBETA statistic is the standardized difference between 
a regression coefficient before and after the removal of the jth observation.  

The formula for DFBETA is approximated by 
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where gikV̂  is the portion of the covariance matrix associated with the gth regression equation. 

Note that this formula matches Pregibon (1981) in the two-group case, but is different from Lesaffre (1989) in the 
multi-group case. 

Cooks Distance: C and Cbar 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon (1981), page 719:  

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points excluding the 
one deleted. Conversely, C includes the deleted point. Although C will usually be the preferred diagnostic to 
measure overall coefficients changes, in the examples examined to date, the one-step approximations were more 
accurate for Cbar than C.” 

The formulas for C and Cbar are 
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 
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DFDEV and DFCHI2 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-square, respectively, 
that occurs when an observation is deleted from the dataset. Large values of these statistics indicate observations 
that have not been fitted well.  

The formulas for these statistics are 

JjCdDFDEV gjjgj ,,2,1    ,2 =+=  

Jj
h
C

DFCHI
gj

gj
gj ,,2,1    ,2 ==  

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

 

Predicted Probabilities 
This section describes how to calculate the predicted probabilities of group membership and associated 
confidence intervals. Recall that the regression equation is linear when expressed in logit form. That is,  
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The adjustment for the prior probabilities changes the value of the intercepts, so this expression may be simplified 
to 
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if we assume that the intercepts have been appropriately adjusted. Assuming that the estimated matrix of 
regression coefficients is distributed asymptotically as a multivariate normal, the point estimates of this quantity 
for a specific set of X values is given by 
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and the corresponding confidence interval is given by 

( )jgj2/ XVX′± αzl j  

where gV  is that portion of the covariance matrix ( )BV ˆ  that deals with the gth regression equation.  

When there are only two groups, these confidence limits can be inverted to give confidence limits on the predicted 
probabilities as 
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where 

jgj XVX′=Bσ  
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When there are more than two groups, the confidence limits on the logits are still given by 

( )jgj2/ XVX′± αzl j  

However, this set of confidence limits of the logits cannot be inverted to give confidence limits for the predicted 
probabilities. We have found no presentation that gives an appropriate set of confidence limits. In order to provide 
an approximate answer, we provide approximate confidence limits by applying the inversion as if there were only 
two groups. This method ignores the correlation between the coefficients of the individual equations. However, 
we hope that it provides a useful approximation to the confidence intervals. 

Subset Selection 
Subset selection refers to the task of finding a small subset of the available independent variables that does a good 
job of predicting the dependent variable. Because logistic regression must be solved iteratively, the task of finding 
the best subset can be very time consuming. Hence, techniques that search all possible combinations of the 
independent variables are not feasible. Instead, algorithms that add or remove a variable at each step must be 
used. Two such searching algorithms are available in this module: forward selection and forward selection with 
switching.  

Before discussing the details of these two algorithms, it is important to comment on a couple of issues that can 
come up. First of all, since there is more than one regression equation when there are more than two categories in 
the dependent variable, it is possible that a variable is important in one of the equations and not in the others. The 
algorithms presented here are based on the overall likelihood. This means that if an independent variable is 
important in at least one of the regression equations, it will be kept. 

A second issue is what to do with the individual-degree of freedom variables that are generated for a categorical 
independent variable. If such a variable has six categories, five binary variables are generated. You can see that 
with two or three categorical variables, a large number of binary variables may result, which greatly increases the 
total number of variables that must be searched. To avoid this problem, the algorithms search on model terms 
rather than on the individual binary variables. Thus, the whole set of binary variables associated with a given term 
are considered together for inclusion in, or deletion from, the model. It is all or none. Because of the time 
consuming nature of the algorithm, this is the only feasible way to deal with categorical variables. If you want the 
subset algorithm to deal with them individually, you can generate the set of binary variables manually and 
designate them as Numeric Variables. 

Hierarchical Models 
A third issue is what to do with interactions. Usually, an interaction is not entered in the model unless the 
individual terms that make up that interaction are also in the model. For example, the interaction term A*B*C is 
not included unless the terms A, B, C, A*B, A*C, and B*C are already in the model. Such models are said to be 
hierarchical. You have the option during the search to force the algorithm to consider only hierarchical models 
during its search. Thus, if C is not in the model, interactions involving C are not even considered. Even though the 
option for non-hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of the log likelihood. Enter this 
term into the model. 

3.  Continue adding terms until a target value for the log-likelihood is achieved or until a preset limit on the 
maximum number of terms in the model is reached. Note that these terms can be limited to those keeping 
the model hierarchical. 
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This method is comparatively fast, but it does not guarantee that the best model is found except for the first step 
when it finds the best single term. You might use it when you have a large number of observations and terms so 
that other, more time consuming, methods are not feasible. 

Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each step when a term is 
added, all terms in the model are switched one at a time with all candidate terms not in the model to determine if 
they increase the value of the log likelihood. If a switch can be found, it is made and the pool of terms is again 
searched to determine if another switch can be made. Note that this switching can be limited to those keeping the 
model hierarchical. 

When the search for possible switches does not yield a candidate, the subset size is increased by one and a new 
search is begun. The algorithm is terminated when a target subset size is reached or all terms are included in the 
model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a large value such 
as 10. By studying the Subset Selection reports from this run, you can quickly determine the optimum number of 
terms. You reset the maximum subset size to this number and make the second run. This two-step procedure 
works better than relying on some F-to-enter and F-to-remove tests whose properties are not well understood to 
begin with. 

Data Structure 
The data given below are the first few rows of a set of data about leukemia patients published in Lee (1980). The 
response variable is whether leukemia remission occurred (Remiss). The independent variables are cellularity of 
the marrow clot section (Cell), smear differential percentage of blasts (Smear), percentage of absolute marrow 
leukemia cell infiltrate (Infil), percentage labeling index of the bone marrow leukemia cells (LI), absolute number 
of blasts in the peripheral blood (Blast), and the highest temperature prior to start of treatment (Temp). This 
dataset is stored in the Leukemia dataset in the Data directory. 

 

Leukemia dataset (subset) 

Remiss Cell Smear Infil LI Blast Temp 
1 80 83 66 190 11.6 996 
1 90 36 32 140 4.5 992 
0 80 88 70 80 0.5 982 
0 100 87 87 70 10.3 986 
1 90 75 68 130 2.3 980 
0 100 65 65 60 2.3 982 
1 95 97 92 100 16.0 992 
0 95 87 83 190 21.6 1020 

Missing Values 
If missing values are found in any of the independent variables being used, the row is omitted. If only the 
dependent variable is missing, the row will not be used in the formation of the coefficient estimates, but a 
predicted value will be generated for that row.  
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Procedure Options 
This section describes the options available in this procedure. 

Variables, Model Tab 
This panel specifies the variables and model used in the analysis. 

Variables 

Groups Y 
This discrete variable identifies the group to which each observation belongs. Values may be text or numeric. The 
variable should have only a few unique values, such as 0 and 1, Yes and No, or A, B, and C. When there are only 
two unique values, the analysis is called logistic regression. When there are three or more unique values, the 
analysis is called multiple-group logistic regression. 

In a logistic regression with G groups, only G-1 logistic regression equations are needed. The group for which a 
regression equation is not created is called the reference group. This group is often the baseline group. In the 
analysis, the other groups are compared to this group. 

The reference group may be designated within parentheses after the name of the variable; otherwise, the reference 
group is determined by the Default Reference Group setting. For example, suppose the group variable, 
CATEGORY, has three values: A, B, and C. 

1. To designate A as the reference group, enter 'CATEGORY(A)' or change Default Reference Group to 
'First Group after Sorting'. 

2. To designate B as the reference group, enter 'CATEGORY(B)'.  

3. To designate C as the reference group, enter 'CATEGORY(C)' or change Default Reference Group to 
'Last Group after Sorting'. 

Default Reference Group 
This option specifies the default reference group for the logistic regression. The reference group is the group for 
which a regression equation is not created. In a logistic regression with G groups, only G-1 logistic regression 
equations are needed. This group is often the baseline group. 

• First, Second, Third, Fourth, or Fifth Group after Sorting 
Use the first, second, third, fourth, or fifth group in alpha-numeric sorted order as the reference group. 

• Last Group after Sorting 
Use the last group in alpha-numeric sorted order as the reference group. 

The reference group may also be designated within parentheses after the name of the Y: Group Variable name, in 
which case the default reference group is ignored. Suppose the group variable, CATEGORY, has four values: A, 
B, C, and D.  

1. If this option is set to 'First Group after Sorting' and the group variable is entered as 'CATEGORY', the 
reference group would be A.  

2. If this option is set to 'Last Group after Sorting' and the group variable is entered as 'CATEGORY', the 
reference group would be D.  

3. If the group variable is entered as 'CATEGORY(B)', the choice for this setting would be ignored, and 
the reference value would be B. 
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Numeric X’s 
Specify numeric independent (also called regressor, explanatory, or predictor) variables here.  By numeric, we 
mean that the values are numeric and at least ordinal. Nominal variables, even when coded with numbers, should 
be specified as Categorical Independent Variables. Although you may specify binary (0-1) variables here, they are 
better analyzed when you specify them as Categorical Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model in the ‘Custom 
Model’ field under the Model tab. 

If you want to create predicted values of Y for values of X not in your database, add the X values to the bottom of 
the database. They will not be used during estimation, but predicted values will be generated for them.  

 

Categorical X’s 
Specify categorical (nominal or group) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values are used to 
identify categories.  

Regression analysis is only defined for numeric variables. Since categorical variables are nominal, they cannot be 
used directly in regression. Instead, an internal set of numeric variables must be substituted for each categorical 
variable. 

Suppose a categorical variable has G categories. NCSS automatically generates the G-1 internal, numeric 
variables for the analysis. The way these internal variables are created is determined by the Recoding Scheme 
and, if needed, the Reference Value. These options can be entered separately with each categorical variable, or 
they can specified using a default value (see Default Recoding Scheme and Default Reference Value below).  

The syntax for specifying a categorical variable is VarName(CType; RefValue) where VarName is the name of the 
variable, CType is the recoding scheme, and RefValue is the reference value, if needed. 

CType 

The recoding scheme is entered as a letter. Possible choices are B, P, R, N, S, L, F, A, 1, 2, 3, 4, 5, or E. The 
meaning of each of these letters is as follows. 
 

• B for binary (the group with the reference value is skipped). 
Example: Categorical variable Z with 4 categories. Category D is the reference value. 
Z   B1   B2   B3  
A     1    0    0 
B     0    1    0 
C     0    0    1 
D     0    0    0 

 
• P for Polynomial of up to 5th order (you cannot use this option with category variables with more than 6 

categories.  
Example: Categorical variable Z with 4 categories. 
Z  P1   P2  P3 
1   -3    1   -1 
3   -1   -1    3 
5    1   -1   -3 
7    3    1    1 
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• R to compare each with the reference value (the group with the reference value is skipped).  
Example: Categorical variable Z with 4 categories. Category D is the reference value. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 

 
• N to compare each with the next category.  

Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1    1    0    0 
3   -1    1    0 
5    0   -1    1 
7    0    0   -1 

 
• S to compare each with the average of all subsequent values.  

Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1   -3    0    0 
3    1   -2    0 
5    1    1   -1 
7    1    1    1 

 
• L to compare each with the prior category.  

Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1   -1    0    0 
3    1   -1    0 
5    0    1   -1 
7    0    0    1 

 
• F to compare each with the average of all prior categories.  

Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1    1    1    1 
3    1    1   -1 
5    1   -2    0 
7   -3    0    0 

 
• A to compare each with the average of all categories (the Reference Value is skipped).  

Example: Categorical variable Z with 4 categories. Suppose the reference value is 3. 
Z  S1   S2  S3 
1   -3    1    1 
3    1    1    1 
5    1   -3    1 
7    1    1   -3 
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• 1 to compare each with the first category after sorting.  
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A   -1   -1   -1 
B    1    0    0 
C    0    1    0 
D    0    0    1 

 
• 2 to compare each with the second category after sorting.  

Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B   -1   -1   -1 
C    0    1    0 
D    0    0    1 

 
• 3 to compare each with the third category after sorting.  

Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C   -1   -1   -1 
D    0    0    1 

 
• 4 to compare each with the fourth category after sorting.  

Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 

 
• 5 to compare each with the fifth category after sorting.  

Example: Categorical variable Z with 5 categories. 
Z  C1   C2  C3  C4 
A    1    0    0    0 
B    0    1    0    0 
C    0    0    1    0 
D    0    0    0    1  
E   -1   -1   -1   -1 

 
• E to compare each with the last category after sorting.  

Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 
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RefValue 
A second, optional argument is the reference value. The reference value is one of the categories. The other 
categories are compared to it, so it is usually a baseline or control value. If neither a baseline or control value is 
evident, the reference value is the most frequent value. 

For example, suppose you want to include a categorical independent variable, State, which has four values: Texas, 
California, Florida, and NewYork. Suppose the recoding scheme is specified as Compare Each with Reference 
Value with the reference value of California. You would enter 
State(R;California) 

Default Recoding Scheme 
Select the default type of numeric variable that will be generated when processing categorical independent 
variables. The values in a categorical variable are not used directly in regression analysis. Instead, a set of 
numeric variables is automatically created and substituted for them. This option allows you to specify what type 
of numeric variable will be created. The options are outlined in the sections below. 

The contrast type may also be designated within parentheses after the name of each categorical independent 
variable, in which case the default contrast type is ignored. 

If your model includes interactions of categorical variables, this option should be set to Contrast with Reference 
or Compare with All Subsequent if you wante to match GLM results for factor effects. 

• Binary (the group with the reference value is skipped). 
Example: Categorical variable Z with 4 categories. Category D is the reference value. 
Z   B1   B2   B3  
A     1    0    0 
B     0    1    0 
C     0    0    1 
D     0    0    0 
 

• Polynomial of up to 5th order (you cannot use this option with category variables with more than 6 
categories.  
Example: Categorical variable Z with 4 categories. 
Z  P1   P2  P3 
1   -3    1   -1 
3   -1   -1    3 
5    1   -1   -3 
7    3    1    1 
 

• Compare Each with Reference Value (the group with the reference value is skipped).  
Example: Categorical variable Z with 4 categories. Category D is the reference value. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 
 

• Compare Each with Next.  
Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1    1    0    0 
3   -1    1    0 
5    0   -1    1 
7    0    0   -1 
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• Compare Each with All Subsequent.  
Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1   -3    0    0 
3    1   -2    0 
5    1    1   -1 
7    1    1    1 
 

• Compare Each with Prior 
Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1   -1    0    0 
3    1   -1    0 
5    0    1   -1 
7    0    0    1 
 

• Compare Each with All Prior 
Example: Categorical variable Z with 4 categories. 
Z  S1   S2  S3 
1    1    1    1 
3    1    1   -1 
5    1   -2    0 
7   -3    0    0 
 

• Compare Each with Average  
Example: Categorical variable Z with 4 categories. Suppose the reference value is 3. 
Z  S1   S2  S3 
1   -3    1    1 
3    1    1    1 
5    1   -3    1 
7    1    1   -3 
 

• Compare Each with First 
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A   -1   -1   -1 
B    1    0    0 
C    0    1    0 
D    0    0    1 
 

• Compare Each with Second 
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B   -1   -1   -1 
C    0    1    0 
D    0    0    1 
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• Compare Each with Third 
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C   -1   -1   -1 
D    0    0    1 
 

• Compare Each with Fourth 
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 
 

• Compare Each with Fifth 
Example: Categorical variable Z with 5 categories. 
Z  C1   C2  C3  C4 
A    1    0    0    0 
B    0    1    0    0 
C    0    0    1    0 
D    0    0    0    1  
E   -1   -1   -1   -1 
 

• Compare Each with Last 
Example: Categorical variable Z with 4 categories. 
Z  C1   C2  C3 
A    1    0    0 
B    0    1    0 
C    0    0    1 
D   -1   -1   -1 

Default Reference Value 
This option specifies the default reference value to be used when automatically generating indicator variables 
during the processing of selected categorical independent variables. The reference value is often the baseline, and 
the other values are compared to it. The choices are 

• First Value after Sorting – Fifth Value after Sorting 
Use the first (through fifth) value in alpha-numeric sorted order as the reference value. 

• Last Value after Sorting 
Use the last value in alpha-numeric sorted order as the reference value. 

Frequencies 
Specify an optional frequency (count) variable. This variable contains integers that represent the number of 
observations (or frequency) associated with each observation. 

If left blank, each observation has a frequency of one. This variable lets you modify that frequency. This is 
especially useful when your data are already tabulated and you want to enter the counts. 
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Validation 
This variable allows you to validate your logistic regression equations by forcing some observations to be ignored 
during the estimation phase and then predicted during the classification phase. This provides independent 
verification of your results. 

The values in this variable determine whether the observation is used during the estimation of the logistic 
regression. If the value of this variable is one, the observation is used in estimating the logistic regression 
coefficients. If the value of this variable is zero, this observation is not used during the estimation phase. 
However, it is used during the validation run in which the estimated regression equations are used to classify these 
observations. The results are displayed in the Classification of Validation Data report. 

Regression Model 
These options control which terms are included in the regression model, or, in the case of a subset selection, 
which terms are in the pool of candidate terms. 

Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included in the regression 
model. For a straight-forward regression model, select 1-Way.  

The options are 

• 1-Way 
This option generates a model in which each variable is represented by a single model term. No cross-
products, interactions, or powers are added. Use this option when you want to use the variables you have 
specified, but you do not want to generate other terms.  

This is the option to select when you want to analyze the independent variables specified without adding any 
other terms. 

For example, if you have three independent variables A, B, and C, this would generate the model: 

A + B + C 

• Up to 2-Way 
This option specifies that all individual variables, two-way interactions, and squares of numeric variables are 
included in the model. For example, if you have three numeric variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*A + B*B + C*C 

On the other hand, if you have three categorical variables A, B, and C, this would generate the model: 

A + B + C + A*B + A*C + B*C 

• Up to 3-Way 
All individual variables, two-way interactions, three-way interactions, squares of numeric variables, and 
cubes of numeric variables are included in the model. For example, if you have three numeric, independent 
variables A, B, and C, this would generate the model: 

A + B + C + A*B + A*C + B*C + A*B*C + A*A + B*B + C*C + A*A*B + A*A*C + B*B*C +A*C*C + 
B*C*C 

On the other hand, if you have three categorical variables A, B, and C, this would generate the model: 

A + B + C + A*B + A*C + B*C + A*B*C 
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• Up to 4-Way 
All individual variables, two-way interactions, three-way interactions, and four-way interactions are included 
in the model. Also included would be squares, cubes, and quartics of numeric variables and their cross-
products. 

For example, if you have four categorical variables A, B, C, and D, this would generate the model: 

A + B + C + D + A*B + A*C + A*D + B*C + B*D + C*D + A*B*C + A*B*D + A*C*D + B*C*D + 
A*B*C*D 

• Interaction 
Mainly used for categorical variables. A saturated model (all terms and their interactions) is generated. This 
requires a dataset with no missing categorical-variable combinations (you can have unequal numbers of 
observations for each combination of the categorical variables). No squares, cubes, etc. are generated. 

For example, if you have three independent variables A, B, and C, this would generate the model: 

A + B + C + A*B + A*C + B*C + A*B*C  

Note that the discussion of the Custom Model option discusses the interpretation of this model. 

• Custom Model 
The model specified in the Custom Model box is used.  

Remove Intercept 
Unchecked indicates that the intercept term, β0 , is to be included in the regression. Checked indicates that the 
intercept should be omitted from the regression model. Note that deleting the intercept distorts most of the 
diagnostic statistics (R2, etc.). In most situations, you should include the intercept in the model.  

Replace Custom Model with Preview Model (button) 
When this button is pressed, the Custom Model is cleared and a copy of the Preview model is stored in the 
Custom Model. You can then edit this Custom Model as desired.  

Maximum Order of Custom Terms 
This option specifies that maximum number of variables that can occur in an interaction (or cross-product) term in 
a custom model. For example, A*B*C is a third order interaction term and if this option were set to 2, the A*B*C 
term would not be included in the model. 

This option is particularly useful when used with the bar notation of a custom model to allow a simple way to 
remove unwanted high-order interactions.  

Custom  
This option specifies a custom model. It is only used when the Terms option is set to Custom. A custom model 
specifies the terms (single variables, cross-products, and interactions) that are to be kept in the model.  

Interactions 
An interaction expresses the combined relationship between two or more variables and the dependent variable by 
creating a new variable that is the product of the variables. The interaction (cross-product) between two numeric 
variables is generated by multiplying them. The interaction between to categorical variables is generated by 
multiplying each pair of internal variables. The interaction between a numeric variable and a categorical variable 
is created by generating all products between the numeric variable and the generated, numeric variables.  

Syntax 
A model is written by listing one or more terms.  The terms are separated by a blank or plus sign. Terms include 
variables and interactions. Specify regular variables (main effects) by entering the variable names. Specify 
interactions by listing each variable in the interaction separated by an asterisk (*), such as Fruit*Nuts or A*B*C.  
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You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. When several 
variables are separated by bars, all of their interactions are generated. For example, A|B|C is interpreted as A + B 
+ C + A*B + A*C + B*C + A*B*C. 

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C. 

Some examples will help to indicate how the model syntax works: 

A|B = A + B + A*B 

A|B A*A B*B = A + B + A*B + A*A + B*B 

Note that you should only repeat numeric variables. That is, A*A is valid for a numeric variable, but not for a 
categorical variable. 

A|A|B|B (Max Term Order=2) = A + B + A*A + A*B + B*B 

A|B|C = A + B + C + A*B + A*C + B*C + A*B*C 

(A + B)*(C + D) = A*C + A*D + B*C + B*D 

(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C 

Subset Selection 

Search Method 
This option specifies the subset selection algorithm used to reduce the number of independent variables used in 
the regression model. Note that since the solution algorithm is iterative, the selection process can be very time 
consuming. The Forward algorithm is much quicker than the Forward with Switching algorithm, but the Forward 
algorithm does not usually find as good of a model.  

Also note that in the case of categorical independent variables, the algorithm searches among the original 
categorical variables, not among the generated individual binary variables. That is, either all numeric variables 
associated with a particular categorical variable are included or not—they are not considered individually. 

Hierarchical models are such that if an interaction is in the model, so are the terms that can be derived from it. 
For example, if A*B*C is in the model, so are A, B, C, A*B, A*C, and B*C. Statisticians usually adopt 
hierarchical models rather than non-hierarchical models. The subset selection procedure can be made to consider 
only hierarchical models during its search. 

The subset selection options are: 

• None – No Search is Conducted 
No subset selection is attempted. All specified independent variables are used in the logistic regression 
equation. 

• (Hierarchical) Forward 
With this algorithm, the term with the largest log likelihood is entered into the model. Next, the term that 
increases the log likelihood the most is added. This selection is continued until all the terms have been entered 
or until the maximum subset size has been reach. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are candidates for 
selection. For example, the interaction term A*B will not be considered unless both A and B are already in 
the model. 

When using this algorithm, you must make one run that allows a large number of terms to find the appropriate 
number of terms. Next, a second run is made in which you decrease the maximum terms in the subset to the 
number after which the log likelihood does not change significantly. 
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• (Hierarchical) Forward with Switching 
This algorithm is similar to the Forward algorithm described above. The term with the largest log likelihood is 
entered into the regression model. The term which increases the log likelihood the most when combined with 
the first term is entered next. Now, each term in the current model is removed and the rest of the terms are 
checked to determine if, when they are used instead, the likelihood function is increased. If a term can be 
found by this switching process, the switch is made and the whole switching operation is begun again. The 
algorithm continues until no term can be found that improves the likelihood. This model then becomes the 
best two-term model.  

Next, the subset size is increased by one, the best third term is entered into the model, and the switching 
process is repeated. This process is repeated until the maximum subset size is reached. Hence, this model 
finds the optimum subset for each subset size. You must make one run to find an appropriate subset size by 
looking at the change in the log likelihood. You then reset the maximum subset size to this value and rerun 
the analysis. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are candidates for 
addition or deletion. For example, the interaction term A*B will not be considered unless both A and B are 
already in the model. Likewise, the term A cannot be removed from a model that contains A*B. 

Stop search when number of terms reaches 
Once this number of terms has been entered into the model, the subset selection algorithm is terminated. Often 
you will have to run the Logistic Regression procedure twice to find an appropriate value. You would set this 
value high for the first run and then reset it appropriately for the second run, depending upon the values of the log 
likelihood. 

Note that the intercept is counted in this number. 

Iteration Tab 

Iteration Options 
The following options are used during the likelihood maximization process. 

Maximum Iterations 
The value specifies the maximum number of iterations allowed during the iteration procedure. If this number is 
reached, the procedure is terminated prematurely. Usually, no more than ten iterations are necessary for the 
algorithm to converge. If you reach this maximum before normal convergence occurs, you should try doubling 
this number. If the algorithm still does not converge before this maximum is reached, you should try omitting (or 
adding) other independent variables. 

This value is used to prevent an infinite loop. 

Iteration Termination 
Unless the Maximum Iteration limit is reached, the maximum likelihood algorithm continues iterating until the 
relative change in the log likelihood from one step to the next is less than this amount. The smaller it is, the larger 
the average number of iterations that will be needed to solve the maximum likelihood equations. 
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Reports Tab 

Parameters 

Prior Probabilities 
The prior probabilities are your estimates of the probabilities that a new individual falls in each group. Among 
other things, this value will change the estimated intercept(s). 

• Equal Priors 
If this option is left blank, the prior probabilities of group membership are assumed equal and only the data 
values are used in the classification process.  

• Numeric List 
Blanks or commas are used to separate the numbers in the list that represents the prior probabilities of group 
membership. You do not have to enter decimal points since the numbers you enter will be scaled so that they 
sum to one. For example, you could enter ‘4 4 2’ or ‘2 2 1’ when you have three groups whose population 
proportions are known to be 0.4, 0.4, and 0.2, respectively. Care must be taken that the number of entries 
matches the number of groups. 

• Ni/N 
Enter ‘Ni/N’ when you want the priors to be estimated from group frequencies in the dataset. For example, 
say you have samples of 50, 100, and 250 from three groups and you select this option. The estimated priors 
would be 50/400=0.125, 100/400=0.25, and 250/400=0.625. 

Alpha Level 
This is the alpha level used in the confidence limits of the odds ratios. 

Select Reports – Summaries 

Run Summary and Response Analysis 
Each of these options specifies whether the indicated report is calculated and displayed.  

Select Reports – Subset Selection 

Subset Selection - Summary and Subset Selection - Detail 
Indicate whether to display these subset selection reports.  

Select Reports – Estimation 

Parameter Significance Tests ... Write Estimated Model 
Indicate whether to display these estimation reports.  

Select Reports – Goodness-of-Fit 

Analysis of Deviance and Log-Likelihood / R-Squared 
Indicate whether to display these model goodness-of-fit reports.  
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Select Reports – Classification 

Classification Matrix ... ROC Report 
Indicate whether to display these classification reports.  

Select Reports – Row-by-Row Lists 

Row Classification Report ... Simple Residuals Report 
This option specifies which rows, if any, are displayed on the row classification, row probabilities, and simple 
residuals reports. When you have a lot of data, you may wish to limit this report to only those rows that were 
classified incorrectly. 

Note that Unused Rows are those that were not used during the parameter estimation phase. However, group 
probabilities are still generated for these rows. 

Residuals ... Residual Diagnostics 
Indicate whether to display these list reports. Note that since these reports provide results for each row, they may 
be too long for normal use when requested on large databases. 

 

Report Options Tab 
The following options control the format of the reports. 

Variable and Value Labels 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable. It lets you select whether to display data values, value labels, or both. 
Use this option if you want the output to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Stagger label and output if label length ≥ 
When writing a row of information to a report, some variable names/labels may be too long to fit in the space 
allocated. If the name (or label) contains more characters than entered here, the rest of the output for that line is 
moved down to the next line. Most reports are designed to hold a label of up to 15 characters. 
 
Enter ‘1’ when you always want each row’s output to be printed on two lines. Enter ‘100’ when you want each 
row printed on only one line. Note that this may cause some columns to be miss-aligned. 

Decimal Places 

Precision 
Specifies whether unformatted numbers (designated as decimal places = ‘All’) are displayed as single (7-digit) or 
double (13-digit) precision numbers in the output. All calculations are performed in double precision regardless of 
the Precision selected here. 

Single 

Unformatted numbers are displayed with 7-digits. This is the default setting. All reports have been formatted for 
single precision. 
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Double 

Unformatted numbers are displayed with 13-digits. This option is most often used when the extremely accurate 
results are needed for further calculation. For example, double precision might be used when you are going to use 
the Multiple Regression model in a transformation. 

Double Precision Format Misalignment 

Double precision numbers require more space than is available in the output columns, causing column alignment 
problems. The double precision option is for those instances when accuracy is more important than format 
alignment. 

Comments 

1. This option does not affect formatted numbers such as probability levels. 

2. This option only influences the format of the numbers as they presented in the output. All calculations are 
performed in double precision regardless of the Precision selected here.  

Probability ... DFBeta Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. Note that this 
option in no way influences the accuracy with which the calculations are done. 

Enter All to display all digits available. The number of digits displayed by this option is controlled by whether the 
Precision option is Single or Double. 

Plots Tab 
These options control the attributes of the various plots. 

Select Plots 

Y vs X Plot ... Pr(Correct) vs Cutoff Plot 
Indicate whether to display these plots. Click the plot format button to change the plot settings. 

Edit During Run 
This is the small check-box in the upper right-hand corner of the format button. If checked, the graphics format 
window for this plot will be displayed while the procedure is running so that you can format it with the actual 
data. 

Report Options – ROC Curves and Prob(Correct) 
vs Cutoff Plot Options 

Number Cutoffs  
The probability range (0 to 1) is divided into this many cutoff points and a point for the ROC curve is generated 
for each. To accurately compute the area under the ROC curve a value of at least 29 should be used here. Values 
ending in 9, such as 19, 29, or 39, provide the best scales of the PC plot. 
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Storage Tab 
These options let you specify if, and where on the dataset, various statistics are stored. 

Warning: Any data already in these columns are replaced by the new data. Be careful not to specify columns that 
contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the dataset when the procedure is run. 

• Do not store data 
No data are stored even if some of the storage items are checked. 

• Store in empty columns 
The values are stored in empty columns only. Columns containing data are not used for data storage, so no 
data can be lost. 

• Store in all columns 
Beginning at the Store First Item In column, the values are stored in this column and those to the right. If a 
column contains data, the data are replaced by the storage values. Care must be used with this option because 
it cannot be undone. 

Store First Item In 
The first item is stored in this column. Each additional item that is checked is stored in the columns immediately 
to the right of this column.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-hand side of the 
data. 

Warning: any existing data in these columns is automatically replaced, so be careful. 

Data Storage Options – Select Items to Store on 
the Spreadsheet 

Expanded X Values ... Covariance Matrix 
Indicate whether to store these row-by-row values, beginning at the column indicated by the Store First Item In 
option. Note that several of these values include a different value for each group and so they require several 
columns when they are stored. 

Expanded X Values 
This option refers to the experimental design matrix. They include all binary and interaction variables generated.  
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Example 1 – Logistic Regression Analysis 
This section presents an introductory example of how to run a logistic regression analysis. The data used are 
stored in the Leukemia dataset. In this analysis, a logistic regression will be run to determine the relationship 
between Cell, LI, and Temp on the binary dependent variable Remiss.  

You may follow along here by making the appropriate entries or load the completed template Example 1 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the Leukemia dataset. 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Click on the file Leukemia.NCSS. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Double-click in the Group Y box. This will bring up the variable selection window.  
• Select Remiss from the list of variables and then click Ok. Remiss will appear in the Group Y box.  
• Click on the Default Reference Group box and select Last after Sorting. 
• Double-click in the Numeric X’s box. This will bring up the variable selection window.  
• Select Cell, LI, Temp from the list of variables and then click Ok. Cell,LI,Temp will appear in the 

Numeric X’s box. Remember to use the Ctrl key to select non-contiguous variables from a list. 

4 Specify the reports. 
• Select the Reports tab. 
• Click the Check All quick check button. 
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to All Rows. 

5 Specify the plots. 
• Select the Plots tab. 
• Check all boxes so that all plots are displayed. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the green Run button.  
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Run Summary  
 
Item Value Item Value 
Dependent Variable Remiss Rows Processed 29 
Reference Group 1 Rows Used 27 
Number of Groups 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 0 
Numeric Ind. Variables 3 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 2 
Final Log Likelihood -10.97669 Unique Row Patterns 28 
Model R2 0.36130 Sum of Frequencies 27 
Actual Convergence 2.94261E-07 Likelihood Iterations 7 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 4 Completion Status Normal Completion 
 

This report provides useful information about the reports to follow. It should be studied to make sure that the data 
were read in properly and that the logistic regression procedure terminated normally. We will only discuss those 
parameters that need special explanation. 

Reference Group 
The reference group is that category of the dependent variable that is defined implicitly in terms of the other 
categories. This is the category that is skipped on much of the output. If you did not specify the reference group 
with the Y Variable, the reference group is chosen according to the 'Default Reference Group' setting. This value 
is critical to interpretation of the rest of the output.  

Number of Groups 
This is the number of unique categories that were found for the dependent variable. Check this count to make 
certain it agrees with what you anticipated. 

Final Log Likelihood 
This is the log likelihood of the model that is reported on here.  

Model R2 
This is the R2 that was achieved by your regression. Read the discussion of R2 that was given earlier to better 
understand how to interpret R2 in the case of logistic regression.  

Actual and Target Convergence 
The Target Convergence is the amount that is used to stop the iterative fitting of the maximum likelihood 
algorithm. If the Actual Convergence amount is larger than the Target amount, the algorithm ended before 
converging and care must be taken in using any of the results. If this happens, the usual remedy is to increase the 
maximum number of iterations. If this does not solve the problem, you will have to change the variables in the 
model. 

Rows Processed, Used, etc. 
These values record how many of each type of observation were encountered when the database was read. You 
should make sure that these amounts are what you expect. 

Unique Row Patterns 
This gives the number of unique patterns found in the variables. Both the dependent and independent variables are 
considered in forming this count. 

Likelihood and Maximum Iterations 
The Likelihood Iterations are the number of iterations necessary to solve the likelihood equations. Usually, fewer 
than ten iterations are necessary. If the number of Likelihood Iterations is equal to the Maximum Iterations, the 
maximum likelihood algorithm did not converge and you should take some remedial action such as increasing the 
Maximum Iterations or changing the regression model. 
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Completion Status 
This is the message that was returned when the maximum likelihood algorithm ended. Unless the message 
“Normal Completion” is received, you should take appropriate corrective action. 

Model D.F. 
This is the number of degrees of freedom in the G-1 logistic regression models. 

Response Analysis  
 
Remiss  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R2 Classified 
0 18 17 0.50000 0.17842 83.333 
1 9 9 0.50000 0.32704 77.778 
Total 27 26   81.481 
 

This report describes the dependent variable. Use it to understand the dependent variable and how well the 
regression model approximates it. 

Categories 
These are the unique values found for the dependent variable. Check to make sure that no unexpected categories 
were found.  

Count 
This is the sum of the frequencies (counts) for each category of the dependent variable.  

Unique Rows 
This is the number of unique rows in each category as determined by the values of the independent variables.  

Prior 
This is the prior probability of each category as given by the user in the Prior Probabilities option box. 

Act vs Pred R2 
This is the R2 that is achieved when the indicator variable for this category is regressed on the predicted 
probability of being in this category.  

% Correctly Classified 
This is the percent of the observations from this category that were correctly classified as such by the multinomial 
logistic regression model.  

Coefficient Significance Tests  
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B0: Intercept -68.32696 56.88604 -1.201 0.22970 0.00000 
B1: Cell -9.65213 7.75107 -1.245 0.21303 0.00006 
B2: LI -3.86710 1.77828 -2.175 0.02966 0.02092 
B3: Temp 82.07365 61.71233 1.330 0.18354 10000+ 
 

This report gives the estimated logistic regression equation and associated significance tests. The reference group 
of the dependent variable is shown in the title. If the dependent variable has more than two categories, the 
appropriate information is displayed for each of the G-1 equations. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com 
Logistic Regression (Old Version) 

320-35 
 © NCSS, LLC. All Rights Reserved. 

Independent Variable 
This is the variable from the model that is displayed on this line. If the variable is continuous, it is displayed 
directly. If the variable is discrete, the definition of the binary variable that was generated is given. For example, 
suppose that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would 
be something like B2: GRADE=B. This refers to a binary variable that is one for those rows in which GRADE  
was B and zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

Regression Coefficient b(i) 
This is the estimated value of the corresponding regression coefficient, sometimes referred to as B or Beta. The 
interpretation of the regression coefficients is difficult. We refer you to the discussion given at that beginning of 
this chapter for more details. 

Standard Error Sb(i) 
This is sb j

, the large-sample estimate of the standard error of the regression coefficient. This is an estimate of the 
precision of the regression coefficient. It is used as the denominator of the Wald test. 

Wald Z-Value H0: β=0 
This is the z value of the Wald test used for testing the hypothesis that βgj = 0  against the alternative βgj ≠ 0 . 
The Wald test is calculated using the formula  

z
b
sgj

gj

bgj

=  

The distribution of the Wald statistic is closely approximated by the normal distribution in large samples. 
However, in small samples, the normal approximation may be poor. For small samples, the deviance tests should 
be used instead to test significance since they perform better. 

One problem that occurs in multiple-group logistic regression is that the test may be significant for the regression 
coefficient associated with one category, but not for the same coefficient associated with another category. In this 
case, we recommend that the independent variable be kept in the model if it is significant in at least one of the G-1 
regression equations.  

Wald Prob Level 
This is the significance level of the Wald test. If this value is less than some predefined alpha level, say 0.05, the 
variable is said to be statistically significant. Otherwise, the variable is not significant. 

Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   
Because of formatting limitations, the value is not displayed if it is larger than 10000. 
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Coefficient Confidence Intervals  
 
 Regression Standard Lower 95% Upper 95% Odds 
Independent Coefficient Error Confidence Confidence Ratio 
Variable b(i) Sb(i) Limit Limit Exp(b(i)) 
B0: Intercept -68.32696 56.88604 -179.82155 43.16763 0.00000 
B1: Cell -9.65213 7.75107 -24.84394 5.53968 0.00006 
B2: LI -3.86710 1.77828 -7.35245 -0.38174 0.02092 
B3: Temp 82.07365 61.71233 -38.88029 203.02760 10000+ 
 

This report gives the estimated logistic regression equation and associated confidence limits. The reference group 
of the dependent variable is shown in the title. If the dependent variable has more than two categories, the 
information is displayed for each of the G-1 equations. 

Independent Variable 
This is the independent variable that is displayed on this line. If the variable is continuous, it is displayed directly. 
If the variable is discrete, the definition of the binary variable that was generated is given. For example, suppose 
that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would be 
something like B2: GRADE=B. This refers to a binary variable that is one for those rows in which GRADE  was 
B and zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

Regression Coefficient b(i) 
This is the estimated value of the regression coefficient, sometimes referred to as B or Beta. The interpretation of 
the regression coefficients is difficult. We refer you to the discussion given at that beginning of this chapter for 
more details. 

Standard Error Sb(i) 
This is sb j

, the large-sample estimate of the standard error of the regression coefficient. This is an estimate of the 
precision of the regression coefficient. It is used as the denominator of the Wald test. 

Confidence Limits 
These are the lower and upper confidences limits for βgj  based on the Wald statistic. These confidence limits are 
use the formula  

b z sgj bgj
± −1 2α /  

Since they are based on the Wald test, they are only valid for large samples. 

Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   
Because of formatting limitations, the value is not displayed if it is larger than 10000. 
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Odds Ratio Report 
 
 Regression Odds Lower 95% Upper 95% 
Independent Coefficient Ratio Confidence Confidence 
Variable b(i) Exp(b(i)) Limit Limit 
B0: Intercept -68.32696 0.00000 0.00000 10000+  
B1: Cell -9.65213 0.00006 0.00000 254.59635  
B2: LI -3.86710 0.02092 0.00064 0.68267  
B3: Temp 82.07365 10000+ 0.00000 10000+  
 

This report presents estimates of the odds ratios and associated confidence limits associated with each variable in 
the model. 

Independent Variable 
This is the independent variable that is displayed on this line. If the variable is continuous, it is displayed directly. 
If the variable is discrete, the definition of the binary variable that was generated is given. For example, suppose 
that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would be 
something like B2: GRADE=B. This refers to a binary variable that is one for those rows in which GRADE  was 
B and zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

This is the estimated value of the corresponding regression coefficient, sometimes referred to as B or Beta. The 
interpretation of the regression coefficients is difficult. We refer you to the discussion given at that beginning of 
this chapter for more details. 

Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   
Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Confidence Limits 
The lower and upper confidence limits yield an interval estimate of the odds ratio. The confidence coefficient is 
one minus alpha. Thus, when alpha is 0.05, the confidence coefficient is 0.95 or 95%. The formula used is  

e b z Si bi( )/± −1 2α  
Since these confidence limits are based on Wald statistics, they are only valid for large samples. 
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Estimated Logistic Regression Model(s) 
 
Model For Remiss = 0 
-68.3269603055054 -9.65212973757993*Cell -3.86709587172716*LI + 82.0736535775605*Temp 
 
Note that each model estimates B for a specific group, where Logit(Y) = XB. To calculate the 
group probabilities when there are only 2 response groups, transform the logit using 
Prob(Y = group) = 1/(1+Exp(-XB)) or Prob(Y ≠ group) = Exp(-XB)/(1+Exp(-XB)). For the calculation 
formula to use when there are more than 2 response groups, see the help documentation. 
 

This report gives the logistic regression model in a regular text format that can be used as a transformation 
formula. A separate model is displayed for each of the G-1 categories of the dependent variable. The regression 
coefficients are displayed in double precision because a single-precision formula does not include the accuracy 
necessary to calculate the scores (logits) and predicted probabilities. 
Note that a transformation must be less than 255 characters. Since these formulas are often greater than 255 
characters in length, you must use the FILE(filename) transformation. To do so, copy the formula to a text file 
using Notepad, Windows Write, or Word to receive the model text. Be sure to save the file as an unformatted text 
(ASCII) file. The transformation is FILE(filename) where filename is the name of the text file, including directory 
information. When the transformation is executed, it will load the file and use the transformation stored there. 

Analysis of Deviance  
 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi2) Level  
All 3 34.37177 12.41839 0.00608   
Cell 1 24.64782 2.69445 0.10070  
LI 1 30.82856 8.87518 0.00289  
Temp 1 24.34072 2.38734 0.12232  
None(Model) 3 21.95337  
   

This report is the logistic regression analog of the analysis of variance table. It displays the results of a chi-square 
test used to test whether each of the individual terms in the regression are statistically significant after adjusting 
for all other terms in the model.  
This report is not produced during a subset selection run. 

Note that this report requires that a separate logistic regression be run for each line. Thus, if the running time is 
too long, you might consider omitting this report. 

Term Omitted 
This is the model term that is being tested. The test is formed by comparing the deviance statistic when the term is 
removed with the deviance of the complete model. Thus, the deviance when the term is left out of the model is 
shown. 

The “All” line refers to the intercept-only model. This line tests the significance of the full model. The 
“None(Model)” refers to the complete model with no terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the associated main 
effects is missing—which is what happens here. However, in this case, we believe this to be a useful test. 

Note that the name may become very long, especially for interaction terms. These long names may misalign the 
report. You can force the rest of the items to be printed on the next line by using the Stagger label and output 
option in the Report Options tab. This should create a better looking report when the names are extra long. 
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DF 
This is the degrees of freedom of the chi-square test displayed on this line. DF is equal to (G-1)DFt where DFt is 
the degrees of freedom of the term. 

Deviance 
The deviance is equal to minus two times the log likelihood achieved by the model being described on this line of 
the report. See the discussion given earlier in this chapter for a technical discussion of the deviance. A useful way 
to interpret the deviance is as the analog of the residual sum of squares in multiple regression. This value is used 
to create the difference in deviance that is used in the chi-square test. 

Increase From Model Deviance (Chi2) 
This is the difference between the deviance for the model described on this line and the deviance of the complete 
model. This value follows the chi-square distribution in medium to large samples. See the discussion given earlier 
in this chapter for a technical discussion of this value. This value can be thought of as the analog of the residual 
sum of squares in multiple regression. Thus, you can think of this value as the increase in the residual sum of 
squares that occurs when this term is removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is redundant after 
considering all of the other terms in the model. 

Note that the first line gives a test for the whole model. 

Prob Level 
This is the significance level of the chi-square test. This is the probability that a chi-square value with degrees of 
freedom DF is equal to this value or greater. If this value is less than 0.05 (or other appropriate value), the term is 
said to be statistically significant. 
 

Log Likelihood & R2 
 
   R2 Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R2 
All 1 -17.18588 0.00000   
Cell 1 -12.32391 0.28290 0.07839 0.71710 
LI 1 -15.41428 0.10308 0.25821 0.89692 
Temp 1 -12.17036 0.29184 0.06946 0.70816 
None(Model) 3 -10.97669 0.36130 0.00000 0.63870 
None(Saturated) 28 0.00000 1.00000  0.00000 
 

This report provides the log likelihoods and R2 values of various models. This report is not produced during a 
subset selection run. 
Note that this report requires that a separate logistic regression be run for each line. Thus, if the running time is 
too long, you might consider omitting this report. 

Term Omitted 
This is the term that is omitted from the model. The “All” line refers to the intercept-only model. The 
“None(Model)” refers to the complete model with no terms removed. The “None(Saturated)” line gives the results 
for the saturated model. 

Note that the name may become very long, especially for interaction terms. These long names may misalign the 
report. You can force the rest of the items to be printed on the next line by using the Stagger label and output 
option in the Format tab. This should create a better looking report when the names are extra long. 

DF 
This is the degrees of freedom of the term displayed on this line. DF is equal to (G-1)DFt where DFt is the 
degrees of freedom of the term. 
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Log Likelihood 
This is the log likelihood of the model displayed on this line. Note that this is the log likelihood of the logistic 
regression without the term listed. 

R2 of Remaining Term(s) 
This is the R2 of the model displayed on this line, RL

2 . Note that the model does not include the term listed at the 
beginning of the line.  

This R2 is analogous to the R2 in multiple regression, but it is not the same. This value is discussed in detail under 
the heading R2 above. Refer to that section for more details about this statistic. We repeat the summary of the 
interpretation of R2 in logistic regression. 

Hosmer and Lemeshow (1989) recommend against the use RL
2  as a goodness of fit measure. However, we have 

included it in our output because it does provide a comparative measure of the proportion of the log likelihood 
that is accounted for by the model. Just remember than an RL

2  value of 1.0 indicates that the logistic regression 
model achieves the same log likelihood as the saturated model. However, this does not mean that it fits the data 
perfectly. Instead, it means that it fits the data as well as could be hoped for.  

Reduction From Model R2 
This is amount that R2 is reduced when the term is omitted from the regression model. This reduction is calculated 
from the R2 achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R2. If it does not, then the term 
can be safely removed from the model. 

Reduction From Saturated R2 
This is the amount that R2 is reduced when the term is omitted from the regression model. This reduction is 
calculated from the R2 achieved by the saturated model. This item is included because it shows how removal of 
this term impacts the best R-squared that is possible. 

Classification Table 
 
 Estimated 
Actual 0 1 Total 
0 15 3 18 
1 2 7 9 
Total 17 10 27 
Percent Correctly classified = 81.5% 
 

This table displays the results of classifying the data based on the logistic regression equations. The table presents 
the counts for each category. 
The Percent Correctly Classified is also presented. This is the percent of the total count that fall on the diagonal of 
the table. 
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ROC Report 
 
ROC Section for Value 0 
Prob N(1|1) N(1|0) N(0|1) N(0|0) Sensitivity Specificity Sensitivity Proportion  
Cutoff A B C D A/(A+C) D/(B+D) +Specificity Correct  
0.05000 18 8 0 1 1.00000 0.11111 1.11111 0.70370  
0.10000 17 8 1 1 0.94444 0.11111 1.05556 0.66667  
0.15000 17 8 1 1 0.94444 0.11111 1.05556 0.66667  
0.20000 17 5 1 4 0.94444 0.44444 1.38889 0.77778  
0.25000 16 4 2 5 0.88889 0.55556 1.44444 0.77778  
0.30000 15 3 3 6 0.83333 0.66667 1.50000 0.77778  
0.35000 15 3 3 6 0.83333 0.66667 1.50000 0.77778  
0.40000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.45000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.50000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.55000 15 1 3 8 0.83333 0.88889 1.72222 0.85185  
0.60000 12 0 6 9 0.66667 1.00000 1.66667 0.77778  
0.65000 11 0 7 9 0.61111 1.00000 1.61111 0.74074  
0.70000 11 0 7 9 0.61111 1.00000 1.61111 0.74074  
0.75000 9 0 9 9 0.50000 1.00000 1.50000 0.66667  
0.80000 9 0 9 9 0.50000 1.00000 1.50000 0.66667  
0.85000 8 0 10 9 0.44444 1.00000 1.44444 0.62963  
0.90000 7 0 11 9 0.38889 1.00000 1.38889 0.59259  
0.95000 7 0 11 9 0.38889 1.00000 1.38889 0.59259  
Area Under ROC Curve = 0.89198 
 

One ROC report is generated for each category. Only the report for category 0 is displayed here. ROC curves can 
be used to determine appropriate cutoff values for classification by letting you compare the sensitivity and 
specificity of various cutoff values. When classifying, you usually classify a row into that category that has the 
highest membership probability. However, this is not always the optimum strategy. This table shows you what 
happens when various cutoff values are selected. 
Classifying an observation can have any one of four possible results. An observation from the group can be 
correctly classified as being from that group (state A) or incorrectly classified as being from another group (state 
C). An observation from another group can be incorrectly classified as being from the group (state B) or correctly 
classified as being from another group (state D).  

The number of observations in each state is computed for each cutoff value between zero and one. A number of 
measures can be calculated from these values. The measures used in ROC analysis are called sensitivity and 
specificity. Sensitivity is the proportion of those from this group that are correctly identified as such. In terms of 
the four states, sensitivity = A/(A+C). Specificity is the proportion of those from other groups that are correctly 
identified as such. In terms of four states, specificity = D/(B+D). Thus, the optimum cutoff value is that one for 
which the sum of sensitivity and specificity is the maximum. This may be found be investigating the report. An 
ROC plot is also generated for each report that gives a graphical display of this report. 

An ROC analysis is most useful in the two-group case. In the multiple-group case, it is of only marginal 
usefulness, since a cutoff value is not specified. Rather, each observation is classified into that group which has 
the highest membership probability. 

Prob Cutoff 
This is the probability cutoff for classification into this group. If an observation’s predicted probability for 
membership in this group is greater than this amount, the observation is classified in this group. Otherwise, it is 
classified as being in some other group. 

A B C D 
The counts for each of the four states. These counts are represented using the notation N(i|j) where i is the 
classified group and j is the actual group. 

Sensitivity 
Sensitivity is the proportion of those from this group that are correctly identified as such. In terms of the four 
states, sensitivity = A/(A+C). 
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Specificity 
Specificity is the proportion of those from other groups that are correctly identified as such. In terms of four 
states, specificity = D/(B+D). 

Sensitivity + Specificity 
A common rule for selecting an appropriate cutoff value is to choose the cutoff with the largest total of sensitivity 
and specificity. This column allows you to do this very quickly. 

Proportion Correct 
Another rule for selecting an appropriate cutoff value is to choose that cutoff which maximizes the number of 
observations that are correctly classified. This column of the report allows you to quickly find the optimum cutoff 
value. Unfortunately, when one group has many more rows than  

the others, this rule may not be useful since it will lead you to classify everyone into the most prevalent group. 

Area Under ROC Curve 
The area under the ROC curve is a popular measure associated with ROC curves. When applied to classification 
in logistic regression, its maximum value of one occurs when all rows are correctly classified. Its minimum value 
of zero occurs when all rows are incorrectly classified. Thus, the nearer this value is to one, the better the 
classification. 

Row Classification Report 
 
   Estimated Lower 95% Upper 95% 
 Actual Estimated Remiss Confidence Confidence 
Row Remiss Remiss Probability Limit Limit 
1 1 1 0.83900 0.31617 0.98326   
2 1 1 0.73317 0.48928 0.88739   
3 0 0 0.81061 0.24565 0.98253   
4 0 0 0.55936 0.24511 0.83230   
5 1 1 0.83326 0.44347 0.96908   
6 0 0 0.57370 0.21384 0.86943   
7* 1 0 0.51337 0.32143 0.70145   
8* 0 1 0.75562 0.21175 0.97267   
9 0 0 0.71480 0.31903 0.93059   
10 0 0 0.99687 0.19043 1.00000 
. . . . . . 
. . . . . . 
. . . . . . 
 

This report displays the actual and predicted group and membership probability for each row of the report. It also 
provides confidence limits for the predicted group-membership probability. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Estimated Group 
This is the group with the largest membership probability.  

Estimated Probability 
This is the estimated probability that the row belongs to the group listed in the Estimated Group column.  

These values allow you to determine how certain the classification is. When the value is near one (above 0.7), the 
logistic regression is convinced that the observation belongs in the designated group. When the value is near 0.5 
or less, the classification was not as clear. 
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Lower and Upper Confidence Limits 
These values provide a confidence interval for the estimated membership probability. Note that this confidence 
interval is only approximate in the multiple-group case. Formulas and technical details are given above in the 
section entitled Predicted Probabilities. 

Row Classification Probabilities 
 
  Estimated Estimated    
 Actual Prob. in Prob. in    
Row Remiss 0 1    
1 1 0.16100 0.83900     
2 1 0.26683 0.73317     
3 0 0.81061 0.18939     
4 0 0.55936 0.44064     
5 1 0.16674 0.83326     
6 0 0.57370 0.42630     
7* 1 0.51337 0.48663     
8* 0 0.24438 0.75562     
9 0 0.71480 0.28520     
10 0 0.99687 0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the actual group and the membership probabilities for each group and each row. This allows 
you investigate how certain each classification is. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Estimated Prob. In Group 
This is the estimated probability that the row belongs in each group. These values allow you to determine how 
certain the classification is.  

Simple Residual Report 
 
  Residual Residual    
 Actual for Group for Group    
Row Remiss 0 1    
1 1 -0.16100 0.16100     
2 1 -0.26683 0.26683     
3 0 0.18939 -0.18939     
4 0 0.44064 -0.44064     
5 1 -0.16674 0.16674     
6 0 0.42630 -0.42630     
7* 1 -0.51337 0.51337     
8* 0 0.75562 -0.75562     
9 0 0.28520 -0.28520     
10 0 0.00313 -0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the simple residuals for each group. Each of the g logistic regression equations can be used to 
estimate the probabilities that each observation belongs to the corresponding group.  

http://www.ncss.com/


NCSS Statistical Software NCSS.com 
Logistic Regression (Old Version) 

320-44 
 © NCSS, LLC. All Rights Reserved. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Residual for Group 
These residuals are defined as 

r y pgj gj gj= −  

where pgj  is the estimated membership probability and ygj  is an indicator variable that is one if the actual group 
is g and zero otherwise. 
Note that, unlike multiple regression, there are g residuals for each observation instead of just one. This makes 
residual analysis much more difficult. If the logistic regression model fits an observation closely, all of its 
residuals will be small, but never zero.  

Unfortunately, the simple residuals have unequal variance equal to ( )n j gj gjπ π1− , where nj  is the number of 
observations with the same values of the independent variables as observation j. This unequal variance makes 
comparisons among the simple residuals difficult and alternative types of residuals are necessary. 

Residual Report 
 
 Actual Pearson  Deviance  Maximum  
Row Remiss Residual  Residual  Hat Diagonal  
1 1 -0.43806 |.............. -0.59253 |||............ 0.20631 ||||........... 
2 1 -0.60328 ||............. -0.78789 |||||.......... 0.05654 |.............. 
3 0 0.48336 |.............. 0.64802 ||||........... 0.26518 ||||||......... 
4 0 1.25520 |||||.......... 1.52442 |||||||||...... 0.23855 |||||.......... 
5 1 -0.44733 |.............. -0.60400 |||............ 0.12192 ||............. 
6 0 0.86201 |||............ 1.05417 ||||||......... 0.16277 |||............ 
7* 1 -1.02710 ||||........... -1.20021 |||||||........ 0.04169 |.............. 
8* 0 1.75843 |||||||........ 1.67872 ||||||||||..... 0.28695 ||||||......... 
9 0 0.63166 ||............. 0.81945 |||||.......... 0.14925 |||............ 
10 0 0.05607 |.............. 0.07923 |.............. 0.04227 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report displays the Pearson residuals, the deviance residuals, and the hat diagonal for each row. These are the 
residuals that most textbooks on logistic regression recommend that you use.  

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Pearson Residual 
The Pearson residuals give the contribution of each row to the Pearson chi-square goodness of fit statistic. When 
the values of the independent variables of each observation are unique, the formula for this residual is 

( )
χ j

gj j gj

j gjg

G w n p
n p

j J= ±
−

=
=
∑

2

1

1 2, , , ,  
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where the plus (minus) is used if w ngj j/  is greater (less) than pgj . By definition, the sum of the squared Pearson 
residuals is the Pearson chi-square goodness of fit statistics.  

Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced model and the 
saturated model. The formula for a deviance residual is 

d w
w

n p
j Jj gj

g

G
gj

j gj

= ±








 =

=
∑2 1 2

1

ln , , , ,  

where the plus (minus) is used if w nREF g j j( ), /  is greater (less) than pREF g j( ), . By definition, the sum of the 
squared deviance residuals is the deviance.  

Maximum Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. These are often called leverage design points. The larger the value of the hat diagonal, the more the 
observation influences estimates of the regression coefficients. There is a separate hat diagonal defined for each 
category. The value reported here is the maximum of all G of the hat diagonals for each row. 

An observation that has a large residual, but has low leverage, does not cause much concern. However, an 
observation with a large leverage and a large residual should be checked very carefully. The formula for the hat 
diagonal associated with the jth observation and gth group is   

( )h n p p X X V j Jgj j gj gj ij kj gik
k

p

i

p

= − =
==
∑∑1 1 2

11

 , , , ,  

where Vgik  is the portion of the covariance matrix of the regression coefficients associated with the gth regression 
equation. The interpretation of this diagnostic is not as clear in logistic regression as in multiple regression 
because it involves the predicted values which in turn involve the dependent variable. In multiple regression, the 
hat diagonals only involve the independent variables. 

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

DFBetas Report 
 
DFBetas Report For Remiss = 0 
 Actual DFBeta  DFBeta  DFBeta  
Row Remiss Intercept  Cell  LI  
1 1 -0.05383 |.............. 0.11561 |.............. -0.12403 |.............. 
2 1 -0.06191 |.............. 0.03603 |.............. -0.07986 |.............. 
3 0 -0.03248 |.............. -0.29680 |||............ -0.19367 ||............. 
4 0 0.07853 |.............. 0.22408 ||............. -0.36761 |||||.......... 
5 1 -0.15954 ||............. -0.02455 |.............. -0.11640 |.............. 
6 0 0.10146 |.............. 0.11173 |.............. -0.16597 ||............. 
7* 1 0.05201 |.............. 0.05264 |.............. 0.12518 |.............. 
8* 0 -0.83713 ||||||||||||||| -0.10576 |.............. 0.19110 ||............. 
9 0 -0.20605 |||............ -0.03081 |.............. -0.23153 |||............ 
10 0 -0.01139 |.............. -0.00613 |.............. -0.01005 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
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One way to study the impact of an observation on each regression coefficient is to determine how much that 
coefficient changes when the observation is deleted. The DFBETA statistic is the standardized difference between 
a regression coefficient before and after the removal of the jth observation. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

DFBeta 
The DFBeta statistic is the standardized difference between a regression coefficient before and after the removal 
of the jth observation.  

The formula for DFBeta is approximated by 
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where Vgik  is the portion of the covariance matrix associated with the gth regression equation. Note that this 
formula matches Pregibon (1981) in the two group case, but is different from Lesaffre (1989) in the multi-group 
case. 

Influence Diagnostics Report 
 
Influence Diagnostics Report For Remiss = 0 
    Cook's  Cook's  
 Actual Hat  Distance  Distance  
Row Remiss Diagonal  (C)  (CBar)  
1 1 0.20631 ||||........... 0.06285 |.............. 0.04988 |.............. 
2 1 0.05654 |.............. 0.02312 |.............. 0.02181 |.............. 
3 0 0.26518 ||||||......... 0.11474 |.............. 0.08432 |.............. 
4 0 0.23855 |||||.......... 0.64822 |||||.......... 0.49359 |||||.......... 
5 1 0.12192 ||............. 0.03164 |.............. 0.02778 |.............. 
6 0 0.16277 |||............ 0.17254 |.............. 0.14446 |.............. 
7* 1 0.04169 |.............. 0.04790 |.............. 0.04590 |.............. 
8* 0 0.28695 ||||||......... 1.74508 ||||||||||||||. 1.24433 ||||||||||||||| 
9 0 0.14925 |||............ 0.08228 |.............. 0.07000 |.............. 
10 0 0.04227 |.............. 0.00014 |.............. 0.00014 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report gives two distance measures similar to Cook’s distance in multiple regression. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. They are discussed in more detail in the Residual Report. 
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Cook’s Distance (C) and (CBar) 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon (1981), page 719: 

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points excluding the 
one deleted. Conversely, C includes the deleted point. Although C will usually be the preferred diagnostic to 
measure overall coefficients’ changes, in the examples examined to date, the one-step approximations were more 
accurate for Cbar than C.” 

The formulas for C and Cbar are 
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

Residual Diagnostics Report 
 
Residual Diagnostics Report For Remiss = 0 
    Deviance  Chi-Square  
 Actual Hat  Change  Change  
Row Remiss Diagonal  (DFDev)  (DFChi2)  
1 1 0.20631 ||||........... 0.40098 |.............. 0.24178 |.............. 
2 1 0.05654 |.............. 0.64257 |.............. 0.38576 |.............. 
3 0 0.26518 ||||||......... 0.50425 |.............. 0.31795 |.............. 
4 0 0.23855 |||||.......... 2.81743 ||||||......... 2.06910 ||............. 
5 1 0.12192 ||............. 0.39260 |.............. 0.22789 |.............. 
6 0 0.16277 |||............ 1.25574 ||............. 0.88752 |.............. 
7* 1 0.04169 |.............. 1.48639 |||............ 1.10084 |.............. 
8* 0 0.28695 ||||||......... 4.06243 |||||||||...... 4.33640 ||||........... 
9 0 0.14925 |||............ 0.74150 |.............. 0.46899 |.............. 
10 0 0.04227 |.............. 0.00642 |.............. 0.00328 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report gives statistics that help detect observations that have not been fitted well by the model. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. They are discussed in more detail in the Residual Report. 

Deviance Change (DFDev) and Chi-Square Change (DFChi2) 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-square, respectively, 
that occurs when an observation is deleted from the dataset. Large values of these statistics indicate observations 
that have not been fitted well. 
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The formulas for these statistics are 

DFDEV d C j Jgj j gj= + =2 1 2, , , ,  

DFCHI
C
h

j Jgj
gj

gj

2 1 2= =, , , ,  

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

Y versus X Plots 
     

      
 

    
 

This section shows scatter plots with the dependent variable on the vertical axis and each of the independent 
variables on the horizontal axis. The plot is useful for finding typos, outliers, and other anomalies in that data.   

Vertical Axis 
The categories of the dependent variable are shown on the vertical axis. Each category is assigned a whole 
number, beginning with the number one. The numbers are assigned in sorted order. Thus, if your dependent 
variable has values A, B, and C, it would be plotted on a numeric scale ranging from about 0.8 to 3.2. The groups 
would be plotted as the numbers 1, 2, and 3. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  
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Simple Residuals versus X Plots 
     

      
 

 
 

This section shows scatter plots with the simple residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   

Vertical Axis 
The residuals are displayed on the vertical axis. Note that the G residuals for each row corresponding to the 
simple residuals are displayed. Thus, if you have N rows, you will have GN points displayed on the plot. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  

Deviance Residuals versus X Plots 
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This section shows scatter plots with the deviance residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   

Vertical Axis 
The deviance residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  

Pearson Residuals versus X Plots 
 

      
 

  
 

This section shows scatter plots with the Pearson residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   
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Vertical Axis 
The Pearson residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  

ROC Curves - Combined and Separate 
 

      
 

   
 

This section displays the ROC curves that can be used to help you find the best cutoff points to use for 
classification. The cutoff point nearest the top-left corner of the plot is the optimum cutoff. You will have to refer 
to the ROC Report to determine the exact value of the cutoff.  

Vertical Axis 
The sensitivity is displayed on the vertical axis.  

Horizontal Axis 
One minus the specificity is displayed on the horizontal axis.  
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Prob Correct versus Cutoff Plot 
 

  
 

This section displays a plot that shows the proportion correct versus the cutoff. It is useful to help determine the 
cutoff point used in classification. This plot may be difficult to use with three or more categories because of the 
ambiguity in the plot. 

Vertical Axis 
The proportion correctly classified for various cutoff values are displayed on the vertical axis.  

Horizontal Axis 
The cutoff values are displayed on the horizontal axis. These cutoff values are in terms of the estimated group-
membership probabilities. Thus a cutoff of 0.4 means that any rows with a group-membership probability of 0.4 
or more are classified into this group. 
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Example 2 – Subset Selection 
This section presents an example of how to conduct a subset selection. The data used are stored in the Leukemia 
dataset. This analysis will search for the best model from among a pool of the six numeric variables. 

You may follow along here by making the appropriate entries or load the completed template Example 2a by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the Leukemia dataset. 
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file Leukemia.NCSS.  
• Click Open.  

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Double-click in the Group Y box. This will bring up the variable selection window.  
• Select Remiss from the list of variables and then click Ok. Remiss will appear in the Group Y box.  
• Click on the Default Reference Group box and select Last after Sorting.  
• Double-click in the Numeric X’s box. This will bring up the variable selection window.  
• Select the variables from Cell to Temp from the list of variables and then click Ok. Cell-Temp will 

appear in the Numeric X’s box.  

4 Specify the model. 
• Set the Terms box to Up to 1-Way.  
• Select Hierarchical Forward with Switching in the Search Method box.  
• Set the Stop search when number of terms reaches to 6.  

5 Specify the reports. 
• Select the Reports tab.  
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None.  
• Press the Uncheck All Quick Check Button. 
• Check the Run Summary, Subset Summary, Subset Detail, and Coefficient Significance Tests 

reports. All other reports should be unchecked.  

6 Run the procedure. 
• From the Run menu, select Run Procedure.  
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Run Summary  

 
Item Value Item Value 
Dependent Variable Remiss Rows Processed 29 
Reference Value 1 Rows Used 27 
Number of Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric Ind. Variables 6 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.87752 Unique Row Patterns 27 
Model R2 0.36707 Sum of Frequencies 27 
Actual Convergence 2.081623E-06 Likelihood Iterations 9 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 6 Completion Status Quasi-Separation 
 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
Your dataset had QUASI-COMPLETE SEPARATION which means that the maximum likelihood routine 
did NOT converge so the statistical tests are not valid. Although the prediction equations 
correctly classified much of your data, they may not do so for other observations. 
Quasi-Complete Separation often occurs because your sample size is too small. 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
 

The first thing we notice is the warning message about quasi-separation. If quasi-separation occurs, the maximum 
likelihood estimates do not exist and all results are suspect. We note that 9 likelihood iterations occurred and the 
Actual Convergence is near the Target Convergence. We decide to rerun the analysis after resetting the Max 
Terms in Subset box from 6 to 5. Note that this error message often occurs when a small set of data is fit with a 
model with too many terms. 
At this point, reset the value for Stop search when number of terms reaches (on the Variables, Model tab) to 5 
manually or load the template Example2b. Now, rerun the analysis. 

Run Summary 
 
Item Value Item Value 
Dependent Variable Remiss Rows Processed 29 
Reference Value 1 Rows Used 27 
Number of Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric Ind. Variables 6 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.92900 Unique Row Patterns 27 
Model R2 0.36407 Sum of Frequencies 27 
Actual Convergence 7.136538E-07 Likelihood Iterations 7 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 5 Completion Status Normal Completion 
 

The warning message has disappeared and the algorithm finished normally. 

Subset Selection Summary 
 
No. No. Log R2 R2 
Terms X's Likelihood Value Change 
1 1 -17.18588 0.00000 0.00000 
2 2 -13.03648 0.24144 0.24144 
3 3 -12.17036 0.29184 0.05040 
4 4 -10.97669 0.36130 0.06946 
5 5 -10.92900 0.36407 0.00277 
 

This report shows the best log-likelihood value for each subset size. In this example, it appears that four terms 
(the intercept and three variables) provides the best model. Note that adding the fifth variable does not increase 
the R-squared value very much. 
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No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log Likelihood 
This is the value of the log likelihood function evaluated at the maximum likelihood estimates. Our goal is to find 
a subset size above which little is gained by adding more variables. 

R2 Value 
This is the value of R2 calculated using the formula 

R
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L LL

p

S

2 0

0

=
−
−

 

as discussed in the introduction. We are looking for the subset size at which this value does not increase by a 
meaningful amount. 

R2 
This is the increase in R2 that occurs when each new subset size is reached. Search for the subset size below which 
the R2 value does not increase by more than 0.02 for small samples or 0.01 for large samples.  

In this example, the optimum subset size appears to be four terms. 

Subset Selection Detail  
 
  No. of No. of Log Term Terms 
Step Action Terms X's Likelihood Entered Removed 
1 Add 1 1 -17.18588 Intercept  
2 Add 2 2 -13.03648 LI  
3 Add 3 3 -12.17036 Cell  
4 Add 4 4 -10.97669 Temp  
5 Add 5 5 -10.92900 Smear 
 

This report shows the highest log likelihood for each subset size. In this example, it appears that four terms (the 
intercept and three variables) provide the best model. Note that adding the fifth variable does not increase the R-
squared value very much. 

Action 
This item identifies the action that was taken at this step. A term was added, removed, or two were switched.  

No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log Likelihood 
This is the value of the log likelihood function after the completion of this step. Our goal is to find a subset size 
above which little is gained by adding more variables. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com 
Logistic Regression (Old Version) 

320-56 
 © NCSS, LLC. All Rights Reserved. 

Terms Entered and Removed 
These columns identify the terms added, removed, or switched. 

Discussion of Example 2 
After considering these reports, it was decided to include Cell, LI, and Temp in the final logistic regression 
model. Another run should now take place using only these independent variables. A complete residual analysis is 
necessary before the equation is finally adopted. 

Example 3 – One Categorical Variable 
The independent variables in logistic regression may be categorical as well as numerical. This example is of the 
simplest categorical case of a binary response and a binary independent variable. More complicated examples will 
be shown below.  

In this example, a simple yes-no question is asked of each member of two groups. The following two-by-two 
table presents the results. The analyst wants to understand the relationship between group membership and 
response to the question. 

 Response 
Group Yes No Total 
A 91 9 100 
B 93 27 120 
Total 184 36 220 
These data would normally be analyzed using the methods for comparing two proportions such as Fisher’s exact 
test or the chi-square test for independence in a contingency table. The following table presents the results of this 
analysis. 

Two Proportions Output 
 

Data Section 
 Sample Number in Number in Proportion In Proportion In  
Sample Size Group One Group Two Group One Group Two  
One 100 9 91 0.090000 0.910000  
Two 120 27 93 0.225000 0.775000 
Total 220 36 184 0.163636 0.836364 
 
Hypothesis Test Section 
 Fisher's Exact Test Normal Approximation Yates Chi-Square Test 
Alternative Prob Decision  Prob Decision Chi-Square Prob 
Hypothesis Level (5%) Z-Value Level (5%) Value Level 
P1-P2<>0 0.009733 Reject Ho -2.6951 0.007037 Reject Ho 6.3107 0.012001 
P1-P2<0 0.005272 Reject Ho -2.6951 0.003518 Reject Ho 
P1-P2>0 0.998394 Accept Ho -2.6951 0.996482 Accept Ho 
 
Odds Ratio and Relative Risk Section 
 Common Original Iterated Log Odds Relative 
Parameter Odds Ratio Odds Ratio Odds Ratio Ratio Risk 
Upper  95% C.L.  0.779298 0.809907 -0.249362 0.838047 
Estimate 0.340659 0.353005 0.353005 -1.041272 0.400000 
Lower  95% C.L.  0.159904 0.139852 -1.833182 0.180300 
 

The conclusion of this analysis is to reject the null hypothesis that the two proportions are equal. The significance 
levels are 0.009733 using Fisher’s exact test and 0.007037 using the normal approximation which is equivalent to 
the chi-square test for independence. Note that the odds ratio is 0.340659. 
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We will now see how to analyze these data using logistic regression. The data must be entered into a database so 
that they can be processed. The following table shows how these data are rearranged and entered. These data have 
been entered into a database named 2BY2.  

 

2By2 dataset (subset) 

Group Response Count 
A No 9 
A Yes 91 
B No 27 
B Yes 93 

 

You may follow along here by making the appropriate entries or load the completed template Example 3 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the 2By2 dataset.  
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file 2By2.NCSS.  
• Click Open.  

2 Open the Logistic Regression window.  
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables.  
• On the Logistic Regression window, select the Variables, Model tab.  
• Double-click in the Group Y box. This will bring up the variable selection window.  
• Select Response from the list of variables and then click Ok. Response will appear in the Group Y box.  
• Click on the Default Reference Group box and select Last after Sorting. 
• Double-click in the Categorical X’s box. This will bring up the variable selection window.  
• Select the variable Group from the list of variables and then click Ok. Group will appear in the 

Categorical X’s box.  
• Click on the Default Recoding Scheme box and select Binary.  
• Double-click in the Frequency Variable box. This will bring up the variable selection window.  
• Select the variable Count from the list of variables and then click Ok. Count will appear in the 

Frequency Variable box.  

4 Specify the reports. 
• Select the Reports tab.  
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None.  
• Check the Run Summary, Response Analysis, Coefficient Significance Tests, Odds Ratios, Analysis 

of Deviance, and Log-Likelihood and R2 reports. All other reports should be unchecked.  

5 Run the procedure. 
• From the Run menu, select Run Procedure.  
• Selected portions of the output reports are shown below.  
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Logistic Regression Output 
 
Run Summary 
  
Parameter Value Parameter Value 
Dependent Variable Response Rows Processed 4 
Reference Value Yes Rows Used 4 
Number of Values 2 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric Ind. Variables 0 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 1 Rows Prediction Only 0 
Final Log Likelihood -94.23344 Unique Row Patterns 4 
Model R2 0.06908 Sum of Frequencies 220 
Actual Convergence 2.559037E-11 Likelihood Iterations 6 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 2 Completion Status Normal Completion 
 
 
Response Analysis  
 
Response  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R2 Classified 
No 36 2 0.50000 0.03302 75.000 
Yes 184 2 0.50000 0.03302 49.457 
Total 220 4   53.636 
 
 
Coefficient Significance Tests  
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B0: Intercept 0.68222 0.29814 2.288 0.02212 1.97826 
B1: (Group="B") -1.07687 0.41218 -2.613 0.00898 0.34066 
 
 
Odds Ratios Report 
 
 Regression Odds Lower 95% Upper 95% 
Independent Coefficient Ratio Confidence Confidence 
Variable (B or Beta) Exp(B) Limit Limit 
B0: Intercept 0.68222 1.97826 1.10282 3.54863  
B1: (Group="B") -1.07687 0.34066 0.15187 0.76413 
 
 
Analysis of Deviance 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 1 196.08640 7.61951 0.00577  
GROUP 1 196.08640 7.61951 0.00577  
None(Model) 1 188.46689    
 
 
Log Likelihood & R2 Section 
   R2 of Reduction Reduction 
Term(s)  Log Remaining From From  
Omitted DF Likelihood Term(s) Model R2 Saturated R2 
All 1 -98.04320 0.00000   
Group 1 -98.04320 0.00000 0.06908 1.00000 
None(Model) 1 -94.23344 0.06908 0.00000 0.93092 
None(Saturated) 4 -42.89226 1.00000  0.00000  
 

Although a casual comparison between this report and that of the Two Proportion procedure shows little in 
common, a more detailed report shows many similarities. First of all, notice that the significance level of the test 
of GROUP in the Analysis of Deviance Section of 0.00577 compares very closely with the 0.007037 from the 
chi-square test. Also notice that the odds ratios from both reports round to 0.34066. The confidence limits of these 
two reports are not exactly the same, but they are close. 
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To summarize the logistic regression analysis, we can conclude that there is a significant relationship between 
response and group. 
This example has shown the similarities between these two approaches to the analysis of two proportions. 
Usually, you would analyze these data using the two proportions approach. However, that approach is not as 
easily extended to the case of several independent variables including a mixture of categorical and numeric. 

Example 4 – Logit Model Validation with BMDP PR 
This example will serve three purposes. First of all, it will be the first example of a dataset whose response 
variable has more than two outcomes. Second, it will be an example of what the output looks like when all of the 
independent variables are categorical. And finally, it will validate the procedure by allowing the comparison of 
the NCSS output with that of the BMDP PR program which also performs multiple-group logistic regression. 
This example comes from the BMDP manual. The database containing the data used in this example is named NC 
Criminal 

The NC Criminal dataset contains data that will be used to study the relationship between a cases verdict and 
three factors: race, county, and type of offense. The variables that are on the database are as follows. 

Count contains the number of individuals with the characteristics specified on that row. 

Verdict is the response variable. Three outcomes are given in the database: G for guilty, NG for not guilty, and NP 
for not prosecuted. 

Race gives the race of the individual. It has two values: A and B. 

County refers to county in North Carolina in which the offense was considered. The possible values are: Durham 
and Orange. 

Offense contains the particular offense that the individual was accused of. These are Drunk, Violence, Property, 
Major Traffic, and Speeding. 

You can view the data by loading the NC Criminal dataset, so they will not be displayed here. 

You may follow along here by making the appropriate entries or load the completed template Example 4 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the NC Criminal dataset. 
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file NC Criminal.NCSS.  
• Click Open.  

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Select Verdict(NP) in the Group Y box. The NP value specifies that this category is to be used as the 

reference group.  
• Enter the Race(B;A) County(B;Durham) Offense(B;Drunk) in the Categorical X’s box. Note that the 

values in parentheses specify binary recoding and the reference value for each variable. These are 
specified so that the output will match that found in BMDP.  

• Double-click in the Frequency Variable box. This will bring up the variable selection window.  
• Select the variable Count from the list of variables and then click Ok. Count will appear in the Frequency 

Variable box.  
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4 Specify the reports. 
• Select the Reports tab.  
• Set the Prior Probabilities to Ni/N. This indicates that the outcome frequencies found in the data will be 

used as the prior probabilities of group membership.  
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None.  
• Check the Run Summary, Response Analysis, Coefficient Significance Tests, Analysis of Deviance, 

and Log-Likelihood and R2 reports. All other reports should be unchecked.  

5 Run the procedure. 
• From the Run menu, select Run Procedure.  

 
Selected portions of the output reports are shown next. 

 

Logistic Regression Output 
 
Run Summary Section 
Parameter Value Parameter Value 
Dependent Variable Verdict Rows Processed 60 
Reference Value NP Rows Used 57 
Number of Values 3 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric Ind. Variables 0 Rows Freq Miss. or 0 3 
Categorical Ind. Variables 3 Rows Prediction Only 0 
Final Log Likelihood -408.29185 Unique Row Patterns 60 
Model R-Squared 0.69779 Sum of Frequencies 615 
Actual Convergence 4.751901E-11 Likelihood Iterations 6 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 14 Max Like Message Normal Completion 
 
 
Response Analysis  
 
Verdict  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R-Squared Classified 
G 445 20 0.72358 0.17107 93.933 
NG 123 20 0.20000 0.10397 20.325 
NP 47 20 0.07642 0.06628 0.000 
Total 615 60   72.033 
 
Coefficient Significance Tests 
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B0: Intercept 
   G 2.82983 0.44457 6.365 0.00000 16.94253 
   NG 1.24012 0.48781 2.542 0.01102 3.45604 
B1: (Race="B") 
   G 0.26083 0.33984 0.767 0.44279 1.29800 
   NG -0.10324 0.36248 -0.285 0.77579 0.90191 
B2: (County="Orange") 
   G -0.89593 0.33719 -2.657 0.00788 0.40823 
   NG -0.12175 0.36036 -0.338 0.73547 0.88537 
B3: (Offense="MjTraffic") 
   G -0.21380 0.62893 -0.340 0.73390 0.80751 
   NG 0.48012 0.67038 0.716 0.47387 1.61627 
B4: (Offense="Property") 
   G -0.91853 0.57784 -1.590 0.11193 0.39911 
   NG 0.00928 0.61911 0.015 0.98804 1.00932 
B5: (Offense="Speed") 
   G 0.49546 0.51245 0.967 0.33361 1.64126 
   NG -0.26697 0.57599 -0.463 0.64301 0.76570 
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B6: (Offense="Violence") 
   G -2.23014 0.51372 -4.341 0.00001 0.10751 
   NG -0.57863 0.53748 -1.077 0.28168 0.56067 
 
Analysis of Deviance Section  Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi2) Level  
All 12 925.59805 109.01434 0.00000  
Race 2 819.21845 2.63475 0.26784  
County 2 832.03780 15.45409 0.00044  
Offense 8 898.18115 81.59744 0.00000  
None(Model) 12 816.58371    
 
Log Likelihood & R² 
   R² of Reduction Reduction 
Term(s)  Log Remaining From From 
Omitted DF Likelihood Term(s) Model R² Saturated R² 
All 2 -462.79903 0.00000   
Race 2 -409.60923 0.68093 0.01686 0.31907 
County 2 -416.01890 0.59887 0.09892 0.40113 
Offense 8 -449.09057 0.17549 0.52230 0.82451 
None(Model) 12 -408.29185 0.69779 0.00000 0.30221 
None(Saturated) 120 -384.68551 1.00000  0.00000 
 

The output format is similar to previous examples. Notice in the analysis of deviance section that the variable race 
is not significant. That is, in these data, the race of the defendant is not related to the verdict. 
The Parameter Significance Tests report combines the two logistic regression equations on one report. This makes 
it a bit more complicated to read, but it allows a quick comparison to be made of the corresponding regression 
coefficients. For each independent variable, the regression coefficient from each equation is shown. Thus, 
2.82983 is the intercept for the G equation and 1.24012 is the intercept for the NG equation. Of course, no 
coefficient is show for NP because it is the reference value. 
Also note that the definition of the binary variables is as before. Thus the parameter B2: County=“Orange” refers 
to a binary variable that was generated from the County variable. This binary variable is one when the county 
value is Orange and zero otherwise. 

Validation 
In order to validate this module, the estimated regression coefficients and the log likelihood generated by the 
BMDP (refer to page 1165 of version 7.0 of the BMDP manual) are displayed below. 
Outcome: G Coefficient Std Error 
1 RACE 0.2608 0.340 
2 COUNTY -0.8959 0.337 
3 OFFENSE(1) -2.230 0.514 
4 OFFENSE(2) -0.9185 0.578 
5 OFFENSE(3) -0.2138 0.629 
6 OFFENSE(4) 0.4955 0.512 
7 CONST1 2.830 0.445 
 
Outcome: NG Coefficient Std Error 
8 RACE -0.1032 0.362 
9 COUNTY -0.1218 0.360 
10 OFFENSE(1) -0.5786 0.537 
11 OFFENSE(2) 0.9281E-02 0.619 
12 OFFENSE(3) 0.4801 0.670 
13 OFFENSE(4) -0.2670 0.576 
14 CONST1 1.240 0.488 

 
As you can see, these results match those displayed by NCSS exactly.  
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Example 5 – Logit Model with Interaction 
This example continues with the analysis of the data given in Example 4. In that example, no interactions were 
included in the model. This example will include the two-way interactions in the model.  

You may follow along here by making the appropriate entries or load the completed template Example 5 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the NC Criminal dataset. 
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file NC Criminal.NCSS.  
• Click Open.  

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Select Verdict(NP) in the Group Y box. The NP value specifies that this category is to be used as the 

reference group.  
• Enter the Race(B;A) County(B;Durham) Offense(B;Drunk) in the Categorical X’s box. Note that the 

values in parentheses specify binary recoding and the reference value for each variable. 
• Double-click in the Frequency Variable box. This will bring up the variable selection window.  
• Select the variable Count from the list of variables and then click Ok. Count will appear in the Frequency 

Variable box.  

4 Specify the Model 
• Set Terms to Up to 2-Way. This will include the two-way interactions in the model.  

5 Specify the reports. 
• Select the Reports tab.  
• Set the Prior Probabilities to Ni/N. This indicates that the outcome frequencies found in the data will be 

used as the prior probabilities of group membership.  
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None.  
• Check the Run Summary, Response Analysis, Coefficient Significance Tests, Analysis of Deviance, 

and Log-Likelihood and R2 reports. All other reports should be unchecked.  

6 Run the procedure.  
• From the Run menu, select Run Procedure.  

 
Selected portions of the output reports are shown below. 
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Logistic Regression Output 
 
Coefficient Significance Tests 
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B0: Intercept 
   G 2.00583 0.50400 3.980 0.00007 7.43225 
   NG 0.72258 0.57465 1.257 0.20860 2.05975 
B1: (Race="B") 
   G 1.44835 0.86924 1.666 0.09567 4.25608 
   NG -1.10628 1.08369 -1.021 0.30733 0.33079 
B2: (County="Orange") 
   G 0.14731 1.15368 0.128 0.89840 1.15871 
   NG 1.83395 1.18755 1.544 0.12251 6.25854 
B3: (Offense="MjTraffic") 
   G -0.30745 1.10221 -0.279 0.78029 0.73532 
   NG -0.25450 1.23436 -0.206 0.83665 0.77531 
B4: (Offense="Property") 
   G -0.72178 0.83542 -0.864 0.38760 0.48589 
   NG 0.35757 0.89267 0.401 0.68874 1.42985 
B5: (Offense="Speed") 
   G 1.93682 1.08041 1.793 0.07303 6.93666 
   NG 0.87254 1.19650 0.729 0.46586 2.39297 
B6: (Offense="Violence") 
   G -0.15836 0.87409 -0.181 0.85624 0.85354 
   NG 1.07460 0.91294 1.177 0.23916 2.92882 
B7: (Race="B")*(County="Orange") 
   G 0.19528 0.81517 0.240 0.81067 1.21566 
   NG 0.83286 0.85899 0.970 0.33225 2.29990 
B8: (Race="B")*(Offense="MjTraffic") 
   G -1.17876 1.35078 -0.873 0.38285 0.30766 
   NG 1.16592 1.50638 0.774 0.43894 3.20886 
B9: (Race="B")*(Offense="Property") 
   G -0.83367 1.27452 -0.654 0.51305 0.43445 
   NG 1.35214 1.42888 0.946 0.34400 3.86569 
B10: (Race="B")*(Offense="Speed") 
   G -1.78987 1.25551 -1.426 0.15398 0.16698 
   NG 0.24862 1.45010 0.171 0.86387 1.28225 
B11: (Race="B")*(Offense="Violence") 
   G -2.31322 1.19041 -1.943 0.05199 0.09894 
   NG 0.51640 1.30133 0.397 0.69150 1.67598 
B12: (County="Orange")*(Offense="MjTraffic") 
   G 0.45137 1.52019 0.297 0.76653 1.57046 
   NG -0.53668 1.61710 -0.332 0.73998 0.58469 
B13: (County="Orange")*(Offense="Property") 
   G 0.04871 1.41697 0.034 0.97258 1.04992 
   NG -2.10279 1.47544 -1.425 0.15410 0.12212 
B14: (County="Orange")*(Offense="Speed") 
   G -1.39431 1.37573 -1.014 0.31082 0.24800 
   NG -2.66093 1.48387 -1.793 0.07294 0.06988 
B15: (County="Orange")*(Offense="Violence") 
   G -2.42314 1.36627 -1.774 0.07614 0.08864 
   NG -3.93664 1.38198 -2.849 0.00439 0.01951 
 
 
Analysis of Deviance Section  Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi2) Level  
All 30 925.59805 146.82239 0.00000  
Race 2 797.83870 19.06304 0.00007  
County 2 788.31126 9.53560 0.00850  
Offense 8 802.98614 24.21048 0.00211  
Race*County 2 780.53878 1.76312 0.41414  
Race*Offense 8 795.98619 17.21053 0.02799  
County*Offense 8 798.81172 20.03607 0.01020  
None(Model) 30 778.77566 
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Log Likelihood & R2  
   R2 Reduction Reduction 
Term(s)  Log Of Remaining From From  
Omitted DF Likelihood Term(s) Model R2 Saturated R2 
All 2 -462.79903 0.00000   
Race 2 -398.91935 0.81778 0.12202 0.18222 
County 2 -394.15563 0.87877 0.06104 0.12123 
Offense 8 -401.49307 0.78483 0.15497 0.21517 
Race*County 2 -390.26939 0.92852 0.01129 0.07148 
Race*Offense 8 -397.99309 0.82964 0.11016 0.17036 
County*Offense 8 -399.40586 0.81155 0.12825 0.18845 
None(Model) 30 -389.38783 0.93980 0.00000 0.06020 
None(Saturated) 120 -384.68554 1.00000  0.00000 
 

Notice how the interactions are labeled. For example, B11 is labeled (Race=“B”)*(Offense=“Violence”). This 
interaction variable is generated by multiplying the binary variable defined by (Race=“B”) with the binary 
variable defined by (Offense=“Violence”). The resulting variable is one if both of these conditions are true and 
zero otherwise. 
Note that the R2 is now 0.93980, so this model is almost as good as the saturated model.  

Looking at the analysis of deviance table, we note that all terms are significant except for the Race*County 
interaction. 

Example 6 – Odds Ratios 
Lachin (2000) pages 90, 91, and 257 presents an analysis of hypothetical data from an ulcer healing clinical trial 
conducted to study the effectiveness of a drug over a placebo. There were 100 patients assigned to the group 
receiving the drug and another 100 patients assigned to the group receiving the placebo. The ulcers were stratified 
into one of three types: 1. Acid-dependent, 2. Drug dependent, and 3. Intermediate. Each ulcer was followed for a 
period of time after which it was considered healed or not. The data for this experiment are given below. These 
data have been entered into a database named Lachin91.  

Lachin91 dataset (subset) 

Count Ulcer Drug Healed 
16 1 1 1 
26 1 1 0 
20 1 0 1 
27 1 0 0 
9 2 1 1 
3 2 1 0 
4 2 0 1 
5 2 0 0 
28 3 1 1 
18 3 1 0 
16 3 0 1 
28 3 0 0 

 
You may follow along here by making the appropriate entries or load the completed template Example 6 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the Lachin91 dataset. 
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file Lachin91.NCSS.  
• Click Open.  
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2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Select Healed(0) in the Group Y box. The 0 value specifies that this category is to be used as the 

reference group.  
• Enter the Ulcer(B;1) Drug(B;0) in the Categorical X’s box. Note that the values in parentheses specify 

binary recoding and the reference value for each variable. 
• Double-click in the Frequency Variable box. This will bring up the variable selection window.  
• Select the variable Count from the list of variables and then click Ok. Count will appear in the Frequency 

Variable box.  

4 Specify the reports. 
• Select the Reports tab.  
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None.  
• Check the Run Summary, Coefficient Significance Tests, Odds Ratios, and Analysis of Deviance 

reports. All other reports should be unchecked.  

5 Run the procedure.  
• From the Run menu, select Run Procedure.  

 
Selected portions of the output reports are shown below. 

Logistic Regression Output 
  
Coefficient Significance Tests  
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B0: Intercept -0.48951 0.21833 -2.242 0.02496 0.61293 
B1: (Ulcer=2) 0.83527 0.50247 1.662 0.09645 2.30543 
B2: (Ulcer=3) 0.32777 0.30424 1.077 0.28132 1.38787 
B3: (Drug=1) 0.50234 0.28845 1.742 0.08159 1.65259 
 
Odds Ratios Report 
 
 Regression Odds Lower 95% Upper 95% 
Independent Coefficient Ratio Confidence Confidence 
Variable b(i) Exp(b(i)) Limit Limit 
B0: Intercept -0.48951 0.61293 0.39955 0.94027  
B1: (Ulcer=2) 0.83527 2.30543 0.86109 6.17243  
B2: (Ulcer=3) 0.32777 1.38787 0.76451 2.51949  
B3: (Drug=1) 0.50234 1.65259 0.93894 2.90864  
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi2) Level  
All 3 276.27807 6.58746 0.08628  
Ulcer 2 272.87155 3.18094 0.20383  
Drug 1 272.74521 3.05460 0.08051  
None(Model) 3 269.69061 
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We note that neither Drug nor Ulcer is statistically significant at the 0.05 level using either the deviance tests in 
the Analysis of Deviance table or the Wald tests in the Parameter Significance Tests section. From the Odds 
Ratios section, we see that the odds of healing are increased 1.65259 when the drug is administered. 

Example 7 – Matched Case-Control Study 
Matched case-control studies should be analyzed using conditional logistic regression, a technique not currently 
available in NCSS. However, 1:1 matched case-control studies may be analyzed using NCSS. This type of design 
occurs when only one control is matched with each case. Collett (1991) describes the steps needed to analyze a 
1:1 match case-control study using a regular logistic regression program. We will describe these steps using the 
same dataset as Collett (1991). 

A matched case-control study was conducted to look at the impact of driving habits and place of residence on 
lower-back pain. A total of 217 matched pairs were recruited. In each pair, one individual was diagnosed as 
having an acute herniated disc (the case) and the other did not (the control). Controls were matched with cases on 
the basis of age (within ten years) and sex. The results were tabulated into the first five columns of the following 
dataset. These data have been entered into a database named Collett266.  

Collett266 dataset 

Count Case 
Driver 

Cntl 
Driver 

Case 
Sub 

Cntl 
Sub 

Case 
DS 

Cntl 
DS Driver Sub DS 

9 0 0 0 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 1 0 
14 1 0 0 0 0 0 1 0 0 
22 1 0 1 0 1 0 1 1 1 
2 0 0 1 1 0 0 0 0 0 
1 1 0 0 1 0 0 1 -1 0 
4 1 0 1 1 1 0 1 0 1 
10 0 1 0 0 0 0 -1 0 0 
1 0 1 1 0 0 0 -1 1 0 
20 1 1 0 0 0 0 0 0 0 
32 1 1 1 0 1 0 0 1 1 
7 0 1 0 1 0 1 -1 -1 -1 
1 0 1 1 1 0 1 -1 0 -1 
29 1 1 0 1 0 1 0 -1 -1 
63 1 1 1 1 1 1 0 0 0 
63 1 1 1 1 1 1 1 0 0 

 

The columns in this table are defined as follows.  

Count is the number of pairs with the indicated characteristics.  
Case Driver is 1 if the case individual was a driver and 0 if not. 
Cntl Driver is 1 if the control individual was a driver and 0 if not. 
Case Sub is 1 if the case individual was a suburban resident and 0 if they lived in the city. 
Cntl Sub is 1 if the control individual was a suburban resident and 0 if they lived in the city. 
Case DS is the product of CaseDrv and CaseSub. This measures the case interaction. 
Cntl DS is the product of CntlDrv and CntlSub. This measures the control interaction. 
Driver is the difference between CaseDrv and CntlDrv. 
Sub is the difference between CaseSub and CntlSub. 
DS is the difference between CaseDS and CntlDS. 
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Only the last three columns are used in the analysis. A column of 1’s is added at the end of the dataset and labeled 
Y. This is the dependent variable. NCSS automatically adds a second group with a group value of zero. This group 
will be empty, but it is necessary to complete the analysis.  

The method given by Collett (1991) is to use the differences between the case and control independent variable 
values as the regressor variables in a logistic regression. Also, the intercept term is not included in the model. We 
will do this in the following example. 

You may follow along here by making the appropriate entries or load the completed template Example 7 by 
clicking on Open Example Template from the File menu of the Logistic Regression window. 

1 Open the Collett266 dataset. 
• From the File menu of the NCSS Data window, select Open Example Data.  
• Click on the file Collett266.NCSS.  
• Click Open.  

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression, then Logistic Regression. The Logistic Regression 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables, Model tab.  
• Select Y in the Group Y box. Note all values of Y are one The reference group will be an imaginary 

group 0.  
• Enter the Driver-DS in the Numeric X’s box. 
• Double-click in the Frequency Variable box. This will bring up the variable selection window.  
• Select the variable Count from the list of variables and then click Ok. Count will appear in the Frequency 

Variable box. 

4 Specify the Model 
• Set Terms to 1-Way. 
• Check the Remove Intercept check box. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, and Simple 

Residuals Report to None. 
• Check the Run Summary, Parameter Significance Tests, Analysis of Deviance, Odds Ratios, Write 

Estimated Model, and Log-Likelihood and R-Squared reports. All other reports should be unchecked. 

6 Run the procedure.  
• From the Run menu, select Run Procedure.  

 
Selected portions of the output reports are shown below. 
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Logistic Regression Output 
 
Coefficient Significance Tests 
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B1: Driver 0.69131 0.31893 2.168 0.03019 1.99633 
B2: Sub 0.44385 0.72034 0.616 0.53778 1.55869 
B3: DS -0.20579 0.74757 -0.275 0.78310 0.81400 
 
 
Odds Ratios Report 
 
 Regression Odds Lower 95% Upper 95% 
Independent Coefficient Ratio Confidence Confidence 
Variable b(i) Exp(b(i)) Limit Limit 
B1: Driver 0.69131 1.99633 1.06846 3.72998  
B2: Sub 0.44385 1.55869 0.37985 6.39607  
B3: DS -0.20579 0.81400 0.18806 3.52337  
 
 
Analysis of Deviance 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi²) Level  
Driver 1 296.14391 4.93901 0.02626  
Sub 1 291.57933 0.37444 0.54060  
DS 1 291.28031 0.07542 0.78361  
None(Model) 3 291.20489    
 

The first step is to test the significance of the interaction term, DS. The deviance value, 0.07542, is not significant, 
so we decide to make another run without the interaction to enable us to more directly study the main effects: 
Driver and Sub.  
Rerunning without the interaction produces the following report. 

 
Coefficient Significance Tests 
 
 Regression Standard Wald Wald Odds 
Independent Coefficient Error Z-Value Prob Ratio 
Variable b(i) Sb(i) H0: β=0 Level Exp(b(i)) 
B1: Driver 0.65787 0.29398 2.238 0.02523 1.93068 
B2: Sub 0.25546 0.22583 1.131 0.25797 1.29106 
 
Odds Ratios Report 
 
 Regression Odds Lower 95% Upper 95% 
Independent Coefficient Ratio Confidence Confidence 
Variable b(i) Exp(b(i)) Limit Limit 
B1: Driver 0.65787 1.93068 1.08512 3.43514  
B2: Sub 0.25546 1.29106 0.82931 2.00990  
 
Analysis of Deviance 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi²) Level  
Driver 1 296.53786 5.25755 0.02185  
Sub 1 292.56797 1.28766 0.25648  
None(Model) 2 291.28031      
   

The deviance tests indicate that Driver is significant, but Sub (suburban residence) is not. The point estimate for 
the odds ratio associated with driver is 1.93068. The 95% confidence interval for the odds ratio of Driver is 1.085 
to 3.435. We conclude that the risk of a herniated disc is about twice as much for drivers as for non-drivers.  
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