Chapter 381

Reference Intervals – Age-Specific

Introduction

Consider a measurement made on a population of individuals (usually healthy patients). A reference interval (RI) of this measurement gives the boundaries between which a typical measurement is expected to fall. When a measurement occurs that is outside these reference interval boundaries, there is cause for concern. That is, the measurement is unusually high or low. The reference interval is often presented as percentiles of a reference population, such as the 2.5th percentile and the 97.5th percentile. Of course, the choice of the reference population is important and you would expect that there is often differences according to age, size, and so on. In the discussion to follow, we will assume age is the covariate, but the methodology works for any continuous covariate.

This procedure estimates an age-specific reference interval for cross-sectional studies using the methodology of Altman (1993), Royston and Wright (1998), and Royston and Sauerbrei (2008). It provides formulas that may be used to produce (per)centiles as well as z-scores for new measurements not included in the original analysis.

This methodology gives results that are similar to those obtained by quantile regression.

Technical Details

Data Collection

Data should be collected specifically to calculate an RI, with only one measurement per subject. The subjects selected should form a representative group without prior selection to avoid biasing the results. It is desirable to have approximately equal numbers of individuals at each age.

Models of the Mean and Standard Deviation (SD)

The fundamental assumption of this method is that at each age, the measurement of interest is normally distributed with a given mean and standard deviation. Furthermore, the means and standard deviations are smooth functions across age. Various types of models are available to model the mean and SD functions, including polynomial, fractional polynomial, and ratios of polynomials.

The reference interval equation takes the form

\[Y = M(X) + z_\alpha SD(X), \quad 0 < X < \infty \]

where \(X \) is age, \(M(X) \) is an estimate of the mean of \(Y \) at \(X \), \(SD(X) \) is an estimate of the standard deviation of \(Y \) at \(X \), and \(z_\alpha \) is the appropriate percentile of the standard normal distribution. \(M(X) \) is estimated using nonlinear least squares. \(SD(X) \) is estimated using a separate (possibly nonlinear) least squares regression in which \(Y \) is replaced by the scaled absolute residuals. The scaling of the residuals \((Y - M(X)) \) is made by multiplying them by \(\sqrt{(\pi/2)} \) (which is approximately equal to 1.2533).
The Six Step Estimation Process
The following six step procedure was suggested by Altman and Chitty (1994).

Step 1 – Fit the Mean Function
The first step is to fit the mean function with a reasonable, well-fitting model. This is usually accomplished by fitting a polynomial, a fractional polynomial, or the ratio of two polynomials. Also, the possibility of transforming Y using the logarithm, square root, or some other power transformation function is considered.

During this step, various models are investigated by considering the goodness-of-fit (R²), the Y-X scatter plot, and the residual versus X plot.

Step 2 – Study the Residuals from the Mean Fit
During this step, the residuals (differences) between the data and the fitted line are examined more closely. Usually, the vertical spread of the residuals will change with X. This will be treated in the next step. But another feature that should be considered is whether the residuals are symmetric or skewed about zero across X. Skewing is not modelled during the next step, so it must be fixed here. Skewing is usually corrected by using the logarithm of Y instead of Y itself.

Step 3 – Fit a Standard Deviation Function
The next step is to estimate the SD function. This is usually accomplished by fitting a linear polynomial to the scaled absolute residuals (SAR). The scaling factor is $\sqrt{\pi/2}$. Occasionally, a quadratic polynomial is required, but usually nothing more complicated than a linear polynomial is needed.

Step 4 – Calculate Z-Scores
The next step is to calculate a z-score for each observation. The z-score for the kth observation is calculated using

$$Z_k = \frac{Y_k - M(X_k)}{SD(X_k)}$$

Step 5 – Check the Goodness-of-Fit of the Models
The first item to consider is the value of R². This value should be as high as possible, although a high R² is not the only consideration. But it is a starting point. The plot of the fit of the mean overlaid on the X-Y plot allows you determine whether the model is appropriate.

The z-scores should also be checked to determine that they are approximately normally distributed. This can be done by looking at a normal probability plot of the z-scores and by considering the results of a normality test such as the Shapiro-Wilk test.

Step 6 – Calculate the Percentiles
The final step is to calculate the percentiles. The formula for a percentile is reference interval equation takes the form

$$Y_{(X, \alpha)} = M(X) + z_\alpha SD(X)$$

Fractional Polynomials
A polynomial function is of the form

$$B0 + B1 X + B2 X^2 + B3 X^3 + \cdots$$

where the exponents of X are positive integers. Although popular, low order polynomials suffer from many deficiencies. First, they offer only a few model shapes which often do not fit the data well, especially near the ends of the data range. Polynomial functions do not have asymptotes, so they can’t model this type of behavior.
A generalization of the polynomial function, called fractional polynomials (FP for short), was proposed by Royston and Altman (1994) and Royston and Sauerbrei (2008). FPs are of the form

\[B_0 + B_1 X^{p_1} + B_2 X^{p_2} + \cdots \]

where \(p_1, p_2, \ldots \) are selected from \{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}. The convention is that \(X^0 = \ln(X) \). Hence the model FP(1, 0, -2) is

\[B_0 + B_1 X + B_2 \ln(X) + B_3 \frac{1}{X^2} \]

An additional extension is with models that involve repeated powers such as \((1, 1) \). Here, the second term is multiplied by \(\ln(X) \). For example, the model FP(2, 2) is

\[B_0 + B_1 X^2 + B_2 X^2 \ln(X) \]

It turns out the models that involve only two terms are usually adequate for creating reference intervals.

Ratio of Two Polynomials

Another useful extension that NCSS provides is the availability of ratios of polynomials. These models are of the form

\[Y = \frac{A_0 + A_1 X}{1 + B_1 X} \]

These models approximate many different curve shapes. They offer a wide variety of curves and often provide better fitting models than polynomials and fractional polynomials. Unfortunately, the presence of the terms in the denominator causes severe problems since the denominator can become zero. When this happens, the model must be discarded.

Data Structure

The data are entered in two variables: one for \(Y \) and one for \(X \).

Missing Values

Rows with missing values in the variables being analyzed are ignored in the calculations. If transformations are used which limit the range of \(X \) and \(Y \) (such as the logarithm), observations that cannot be transformed are treated as missing values.

Procedure Options

This section describes the options available in this procedure.

Variables Tab

This panel specifies the variables and model used in the analysis.
Variables

Y (Response) Variable
Specify Y, the response or dependent variable. This variable holds the outcome measurements. The values fed into the prediction equation depend on which transformation (if any) is selected for this variable.

Y Transformation
Specifies a power transformation for the indicated variable.
Available transformations are
Y' = 1/Y² = 1/(Y*Y)
Y' = 1/Y
Y' = 1/√Y
Y' = LN(Y)
Y' = √Y
Y' = Y (None)
Y' = Y² = Y*Y
When a transformation cannot be applied to a particular data value, the result will be a missing value. Care must be taken so that you don't apply a transformation that omits much of your data. For example, you cannot take the square root of a negative number, so if you apply this transformation to negative values, those observations will be treated as missing values and ignored. Similarly, you cannot have a zero in the denominator of a quotient and you cannot take the logarithm of a number less than or equal to zero.

X (Independent) Variable
Specifies a single independent (X) variable.

Model of the Mean of Y as a Function of X

Model Type
This options allows you to select the general type of model (prediction equation) that you want to use. Your choices are

Find the Best Fitting Model
This option fits 44 models with one or two terms and selects that model the fits the data the best. It does this by selecting the model with the maximum R² value.

Select Terms for a Specific Model
This options lets you specify a standard linear regression (by selecting only ‘x’), a polynomial regression (by selecting only x, x², and possibly x³), or a fractional polynomial by selecting two or three terms.

Select Terms for a Specific Ratio of Polynomials Model
This options lets you specify a rational function model, such as (A + Bx)/(1 + Cx). This option works well for data the exhibit a curved relationship. There are a few rules that may be helpful when creating an appropriate rational function:
1. Use the same terms in both the numerator and denominator.
2. Keep the model as simple as possible.
3. Look at the graph of the equation. Sometimes, a division by zero can cause the model to produce huge values in the data range.

4. The simple model \(y = (A + Bx)/(1 +Cx) \) will usually work just fine. This model is specified by checking 'x' under both the Numerator Terms and Denominator Terms.

5. Experiment by trying several models and watching the R² value and the plots.

Model Type: Select Terms for a Specific Model

Check the terms that you want to include in the model. Usually, only one or two terms are needed. As you begin the search for an appropriate model, you would try just x, then x and x², and then x and LN(x). If none of these work well, you could try other models.

The second set of terms that involve LN(X) are used in designating various fractional polynomial models. They are usually specified in pairs. For example, you might select x and (x)LN(x) or 1/x and (1/x)LN(x).

Model Type: Select Terms for a Specific Ratio of Polynomials Model

Check the terms that you want to include in the numerator and the denominator of the model. Usually, the simplest model with only x in the numerator and x in the denominator will work. You can add other terms as desired.

These models tend to work well or fail miserably. They do not fit straight-line data well, so if you see a straight-line trend in your data, don’t use these models.

To make certain you have a good model, study the plot show the function drawn through the data. If you see wild swings in the model, you should adjust or discard it.

Model of the Standard Deviation of Y as a Function of X

This options lets you specify a model by checking the desired terms. Usually, selecting just x will be provide an appropriate model for SD(X). Very seldom will you need to use models with more than x and x².

Options Tab

The following options control the nonlinear regression algorithm. You can usually leave them at their default values. If a model fit is not converging, it is probably because you have selected a model that won’t fit and not because these options need to be changed.

Options

Lambda

This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We recommend that you do not change this value unless you are very familiar with both your model and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at which the algorithm converges.

Nash Phi

Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is large, increasing this value may speed convergence.

Lambda Inc

This is a factor used for increasing lambda when necessary. It influences the rate at which the algorithm converges.
Lambda Dec
This is a factor used for decreasing lambda when necessary. It also influences the rate at which the algorithm converges.

Max Iterations
This sets the maximum number of iterations before the program aborts. Setting this value to an appropriate number (say 20) causes the algorithm to abort after this many iterations.

Zero
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower than this value are reset to zero. If unexpected results are obtained, you might try using a smaller value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001.

Reference Interval Options

Residual Scaling Factor
When estimating the standard deviation from the residuals, we (along with most authors) recommend that the residuals be multiplied by a scaling factor of $\sqrt{\pi/2} \approx 1.2533$.

You may want to use a different scaling factor or simply not use it. When you don’t want to use the scaling factor, enter 1.0 here. If you want to change it, enter the new value here.

Reports Tab
The following options control which reports and plots are displayed.

Select Reports

Summary Report ... Percentile Report
These options specify which reports are displayed.

Percentiles
Specify a list of percentiles for which the response (Y) is to be calculated. All values in the list must be between 1 and 99.

Syntax
Numbers are separated by blanks or commas in this list. Specify sequences with a colon, putting the increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25.

Xs
Specify a list of Xs (times, ages, sizes, etc.) at which the percentiles are to be calculated. The possible values of X depend on the model that you have chosen. For example, if you model includes 1/X, then you should not enter ‘0’ in this list.

Syntax
Numbers are separated by blanks or commas. Specify sequences with a colon, putting the increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25. Avoid 0 and negative numbers.

Use "(10)" alone to specify ten, equal-spaced values between zero and the maximum.
Report Options Tab

This section controls the formatting of numbers on the reports.

Report Options

Confidence Level
This is the confidence level for all confidence interval reports selected. The confidence level reflects the percent of the times that the confidence intervals would contain the true value if many samples were taken. Typical confidence levels are 90%, 95%, and 99%, with 95% being the most common.

Variable Names
Specify whether to use variable names or (the longer) variable labels in report headings.

Report Decimal Places

Y - Percentile
This option allows the user to specify the number of decimal places directly or using an Auto function. If one of the Auto options is used, the ending zero digits are not shown. Your choice here will not affect calculations; it will only affect the format of the output.

Auto
If one of the Auto options is selected, the ending zero digits are not shown. For example, if Auto (Up to 7) is chosen, 0.0500 is displayed as 0.05 and 1.314583689 is displayed as 1.314584.

The output formatting system is not designed to accommodate Auto (Up to 13), and, if chosen, this will likely lead to report lines that run on to a second line. This option is included, however, for the rare case when a very large number of decimals is needed.

Plots Tab

This section controls the plot(s) showing the data with the fitted function line overlain on top and the residual plots.

Reference Interval Percentiles used on Plots

Lower Percentile
Specify the lower percentile to be displayed on the plot. The area between the lower percentile and the upper percentile is shaded.

The range of permissible values is from 1 to 49.

Upper Percentile
Specify the upper percentile to be displayed on the plot. The area between the lower percentile and the upper percentile is shaded.

The range of permissible values is from 51 to 99.

Select Plots

Function Plot with Actual Y ... Probability Plot of Z-Scores
These options specify which plots are displayed. Click the plot format button to change the plot settings.
Storage Tab

This section controls the values that are stored with the dataset when the procedure is run.

Storage Variables

Store (Predicted Values, Residuals, Z-Scores) in

Specify a column to store these values in when the analysis is run.

Example 1 – Creating a Reference Interval Equation

This section presents an example of how to create a reference interval equation from a set of gestation data. In this dataset, the length of gestation (Gestation) and an ultrasonic measurement (Response) of 100 individuals is recorded. The program will conduct a search of 44 possible models and select the model that fits the data the best. A straight-line linear regression model appeared to fit the scaled absolute residuals. These models will be used to create the reference interval equation.

You may follow along by making the appropriate entries or load the completed template Example1 by clicking on Open Example Template from the File menu of the Reference Intervals – Age-Specific window.

1. Open the ReferenceInterval dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file ReferenceInterval.NCSS.
 - Click Open.

2. Open the Reference Intervals – Age-Specific window.
 - Using the Analysis menu or the Procedure Navigator, find and select the Reference Intervals – Age-Specific procedure.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - Select the Variables tab.
 - Double-click in the Y (Response) box. This will bring up the variable selection window.
 - Select Response from the list of variables and then click Ok.
 - Double-click in the X (Covariate) box. This will bring up the variable selection window.
 - Select Gestation from the list of variables and then click Ok.

4. Specify the Model of the Mean Function.
 - Set Model Type to Find the Best Fitting Model.

5. Specify the Model of the Standard Deviation Function.
 - Check the x box.

6. Specify the reports.
 - Select the Reports tab.
 - Check all reports. Note that all reports are not usually displayed, but we will do this here so they can all be documented.

7. Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Model Search Summary Report

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Variable</td>
<td>Response</td>
<td>Scaled Absolute Residuals</td>
</tr>
<tr>
<td>X Variable</td>
<td>Gestation</td>
<td>Gestation</td>
</tr>
<tr>
<td>Rows Read</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rows Used</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Residual Scale Factor</td>
<td>$\sqrt{\pi/2}$</td>
<td></td>
</tr>
<tr>
<td>Models Tried</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>Selected Model</td>
<td>$y = A_0 + A_1 x^2 + A_2 1/x^2$</td>
<td>$</td>
</tr>
<tr>
<td>Iterations</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R^2 of Selected Model</td>
<td>0.857448</td>
<td>0.125270</td>
</tr>
<tr>
<td>SE = $\sqrt{\text{MSE}}$</td>
<td>0.04496217</td>
<td>0.03399233</td>
</tr>
</tbody>
</table>

This report summarizes the fitting of the two models: the first column of the Mean and the second column of the Standard Deviation.

Variable Names

These entries give the names of the X and Y variables.

Rows Read

The number of rows in the X and Y variables.

Rows Used

The number of rows used in the calculations. This is the number of rows with non-missing values in both X and Y.

Residual Scale Factor

During the estimation of the standard deviation model, each residual is multiplied by this value.

Models Tried

The number of models considered during the search for the best fitting model.

Select Model

The selected model in symbolic form.

Iterations

The number of iterations required. A ‘0’ here indicates that convergence occurred before iteration began. If the number of iterations is equal to the Maximum Iterations that you set, the algorithm did not converge, but was aborted.

R^2

This value is computed in the usual way for models that do not include a denominator polynomial. When a denominator is included, this value is only approximately correct.

R^2 varies between 0 and 1, with 0 indicating a poor fit and 1 indicating a perfect fit. Note that the R^2 of the standard deviation model will usually be close to zero. That is okay.

The R^2 value allows you to compare various models. This value, combined with the plots, is used to determine the best fitting model.

SE

An estimate of the standard error.
Model Search: Candidate Models Sorted by R^2

<table>
<thead>
<tr>
<th>Rank</th>
<th>Mean Model</th>
<th>Mean Model R²</th>
<th>R^2 minus Best R²</th>
<th>SD Model</th>
<th>SD Model R²</th>
<th>Normality Test R²</th>
<th>Prob Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x^2 + 1/x^2$</td>
<td>0.857448</td>
<td>0.000000</td>
<td>x</td>
<td>0.125270</td>
<td>0.6878</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$x + 1/x^2$</td>
<td>0.857414</td>
<td>-0.000034</td>
<td>x</td>
<td>0.124475</td>
<td>0.6539</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$1/x^2 + x^3$</td>
<td>0.857375</td>
<td>-0.000074</td>
<td>x</td>
<td>0.123635</td>
<td>0.7199</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\sqrt{x} + 1/x^2$</td>
<td>0.857353</td>
<td>-0.000095</td>
<td>x</td>
<td>0.123920</td>
<td>0.6360</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$1/x + x^3$</td>
<td>0.857294</td>
<td>-0.000154</td>
<td>x</td>
<td>0.122213</td>
<td>0.5748</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LN(x) + $1/x^2$</td>
<td>0.857262</td>
<td>-0.000187</td>
<td>x</td>
<td>0.122963</td>
<td>0.6127</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$1/x + x^2$</td>
<td>0.857208</td>
<td>-0.000240</td>
<td>x</td>
<td>0.121890</td>
<td>0.6070</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$\sqrt{x} + 1/x$</td>
<td>0.857133</td>
<td>-0.000316</td>
<td>x</td>
<td>0.121470</td>
<td>0.5902</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>\sqrt{x}</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LN(x) + $1/x$</td>
<td>0.857071</td>
<td>-0.000378</td>
<td>x</td>
<td>0.121185</td>
<td>0.6008</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$1/x + x^3$</td>
<td>0.857208</td>
<td>-0.000240</td>
<td>x</td>
<td>0.121890</td>
<td>0.6070</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$1/\sqrt{x} + 1/x^2$</td>
<td>0.857133</td>
<td>-0.000316</td>
<td>x</td>
<td>0.121470</td>
<td>0.5902</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$x + 1/x$</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$\sqrt{x} + 1/x$</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LN(x) + $1/x$</td>
<td>0.857071</td>
<td>-0.000378</td>
<td>x</td>
<td>0.121185</td>
<td>0.6008</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>LN(x) + $1/x^2$</td>
<td>0.857294</td>
<td>-0.000154</td>
<td>x</td>
<td>0.122213</td>
<td>0.5748</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$\sqrt{x} + 1/x$</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>\sqrt{x}</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$\sqrt{x} + 1/x$</td>
<td>0.857100</td>
<td>-0.000348</td>
<td>x</td>
<td>0.121320</td>
<td>0.5954</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$\sqrt{x} + LN(x)/\sqrt{x}$</td>
<td>0.857789</td>
<td>-0.000554</td>
<td>x</td>
<td>0.120123</td>
<td>0.6147</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>LN(x) + $1/\sqrt{x}$</td>
<td>0.857045</td>
<td>-0.000404</td>
<td>x</td>
<td>0.120604</td>
<td>0.6067</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$\sqrt{x} + LN(x)/\sqrt{x}$</td>
<td>0.857789</td>
<td>-0.000554</td>
<td>x</td>
<td>0.120123</td>
<td>0.6147</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>LN(x) + $1/\sqrt{x}$</td>
<td>0.857045</td>
<td>-0.000404</td>
<td>x</td>
<td>0.120604</td>
<td>0.6067</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$\sqrt{x} + LN(x)$</td>
<td>0.855350</td>
<td>-0.000209</td>
<td>x</td>
<td>0.113861</td>
<td>0.5993</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$\sqrt{x} + LN(x)/\sqrt{x}$</td>
<td>0.855350</td>
<td>-0.000209</td>
<td>x</td>
<td>0.113861</td>
<td>0.5993</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>LN(x) + x^2</td>
<td>0.855350</td>
<td>-0.000209</td>
<td>x</td>
<td>0.113861</td>
<td>0.5993</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>$\sqrt{x} + x$</td>
<td>0.855273</td>
<td>-0.000217</td>
<td>x</td>
<td>0.113529</td>
<td>0.6049</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>$\sqrt{x} + x^2$</td>
<td>0.855273</td>
<td>-0.000217</td>
<td>x</td>
<td>0.113529</td>
<td>0.6049</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>$\sqrt{x} + LN(x)$</td>
<td>0.854307</td>
<td>-0.0003142</td>
<td>x</td>
<td>0.110612</td>
<td>0.5560</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$\sqrt{x} + x^2$</td>
<td>0.853838</td>
<td>-0.0003611</td>
<td>x</td>
<td>0.109340</td>
<td>0.5240</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>$\sqrt{x} + x^3$</td>
<td>0.852207</td>
<td>-0.0005241</td>
<td>x</td>
<td>0.104068</td>
<td>0.4757</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>$\sqrt{x} + x^4$</td>
<td>0.851975</td>
<td>-0.0005473</td>
<td>x</td>
<td>0.103480</td>
<td>0.4918</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>$\sqrt{x} + x^5$</td>
<td>0.849279</td>
<td>-0.0008170</td>
<td>x</td>
<td>0.095082</td>
<td>0.4474</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>$\sqrt{x} + x^6$</td>
<td>0.847374</td>
<td>-0.010074</td>
<td>x</td>
<td>0.089914</td>
<td>0.4254</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>$\sqrt{x} + LN(x)$</td>
<td>0.846534</td>
<td>-0.010915</td>
<td>x</td>
<td>0.092736</td>
<td>0.3088</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>LN(x) + x^2</td>
<td>0.846534</td>
<td>-0.010915</td>
<td>x</td>
<td>0.092736</td>
<td>0.3088</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>LN(x) + $LN^2(x)$</td>
<td>0.846534</td>
<td>-0.010915</td>
<td>x</td>
<td>0.092736</td>
<td>0.3088</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>$x^2 + x^3$</td>
<td>0.841944</td>
<td>-0.015505</td>
<td>x</td>
<td>0.076374</td>
<td>0.4032</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>$x^2 + x^4$</td>
<td>0.839916</td>
<td>-0.017533</td>
<td>x</td>
<td>0.092657</td>
<td>0.7381</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$x^2 + x^5$</td>
<td>0.833205</td>
<td>-0.024243</td>
<td>x</td>
<td>0.058763</td>
<td>0.3602</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>$x^3 + x^2LN(x)$</td>
<td>0.831588</td>
<td>-0.025861</td>
<td>x</td>
<td>0.071712</td>
<td>0.3496</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>$x^4 LN(x)$</td>
<td>0.811226</td>
<td>-0.046222</td>
<td>x</td>
<td>0.041810</td>
<td>0.3195</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>x^5</td>
<td>0.759235</td>
<td>-0.098213</td>
<td>x</td>
<td>0.007363</td>
<td>0.2219</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>x^6</td>
<td>0.700519</td>
<td>-0.156929</td>
<td>x</td>
<td>0.000201</td>
<td>0.1232</td>
<td></td>
</tr>
</tbody>
</table>

Rank
The rank number after sorting the models by R^2.

Mean Model
The generic model of the mean being reported on in this row.

Mean Model R^2
The R^2 value of this model.

R^2 minus Best R^2
The difference between the R^2 value of this model and the R^2 value of the best model encountered.

SD Model
The generic model of the standard deviation being reported on in this row.
SD Model R^2
The R^2 value of this model.

Prob Level of Normality Test of Z-Scores
The p-value of the Shapiro-Wilk normality test of the z-scores. If this value is greater than 0.05, there is not enough evidence to conclude that the data are not normally distributed.

Individual Model Summary Report

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean Equation</th>
<th>Standard Deviation Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Variable</td>
<td>Response</td>
<td>Scaled Absolute Residuals</td>
</tr>
<tr>
<td>X Variable</td>
<td>Gestation</td>
<td>Gestation</td>
</tr>
<tr>
<td>Rows Read</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rows Used</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Residual Scale Factor</td>
<td>$\sqrt{(\pi/2)}$</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>$y=A_0+A_1x^2+A_21/x^2$</td>
<td>$</td>
</tr>
<tr>
<td>Iterations</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R^2</td>
<td>0.857448</td>
<td>0.125270</td>
</tr>
<tr>
<td>SE = $\sqrt{\text{MSE}}$</td>
<td>0.04496217</td>
<td>0.03399233</td>
</tr>
</tbody>
</table>

This report summarizes the fitting of the two models: the first column of the Mean and the second column of the Standard Deviation.

Variable Names
These entries give the names of the X and Y variables.

Rows Read
The number of rows in the X and Y variables.

Rows Used
The number of rows used in the calculations. This is the number of rows with non-missing values in both X and Y.

Residual Scale Factor
During the estimation of the standard deviation model, each residual is multiplied by this value.

Model
The models in symbolic form.

Iterations
The number of iterations required. A ‘0’ here indicates that convergence occurred before iteration began. If the number of iterations is equal to the Maximum Iterations that you set, the algorithm did not converge, but was aborted.

R^2
This value is computed in the usual way for models that do not include a denominator polynomial. When a denominator is included, this value is only approximately correct.

R^2 varies between 0 and 1, with 0 indicating a poor fit and 1 indicating a perfect fit. Note that the R^2 of the standard deviation model will usually be close to zero. That is okay.

The R^2 value allows you to compare various models. This value, combined with the plots, is used to determine the best fitting model.
SE
An estimate of the standard error.

Iterations Reports

Mean Function Estimation Iterations Report

<table>
<thead>
<tr>
<th>Itn No.</th>
<th>Error Sum Lambda</th>
<th>Lambda</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1960949</td>
<td>4E-05</td>
<td>10.31614</td>
<td>-8.090378E-05</td>
<td>75.65155</td>
</tr>
</tbody>
</table>

Convergence criterion met.

Standard Deviation Estimation Iterations Report

<table>
<thead>
<tr>
<th>Itn No.</th>
<th>Error Sum Lambda</th>
<th>Lambda</th>
<th>C0</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1132369</td>
<td>4E-05</td>
<td>-0.00397401</td>
<td>0.001716751</td>
</tr>
</tbody>
</table>

Convergence criterion met.

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each iteration of each model. They allow you to observe the progress of the estimation algorithms.

Coefficient Estimation Reports

Mean Equation - Coefficient Estimation Report

Model: \(y = A_0 + A_1 x + A_2 \frac{1}{x^2} \)

<table>
<thead>
<tr>
<th>Coefficient and Term</th>
<th>Coefficient Estimate</th>
<th>Standard Error of Estimate</th>
<th>Lower 95.0% Confidence Limit</th>
<th>Upper 95.0% Confidence Limit</th>
<th>T Value</th>
<th>Prob Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>10.31614</td>
<td>0.03384301</td>
<td>10.24897</td>
<td>10.38331</td>
<td>304.82</td>
<td>0.0000</td>
</tr>
<tr>
<td>A1 * x</td>
<td>-8.090378E-05</td>
<td>2.342309E-05</td>
<td>-0.001273921</td>
<td>-3.441544E-05</td>
<td>-3.45</td>
<td>0.0008</td>
</tr>
<tr>
<td>A2 / x^2</td>
<td>75.65155</td>
<td>9.254083</td>
<td>57.28476</td>
<td>94.01834</td>
<td>8.17</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Estimated Model of Response

\((10.31614 - (8.090378E-05) \times \text{Gestation}^2 + (75.65155) \times \frac{1}{\text{Gestation} \times \text{Gestation}}) \)

Standard Deviation Equation - Coefficient Estimation Report

Model: \(SD = C_0 + C_1 x \)

<table>
<thead>
<tr>
<th>Coefficient and Term</th>
<th>Coefficient Estimate</th>
<th>Standard Error of Estimate</th>
<th>Lower 95.0% Confidence Limit</th>
<th>Upper 95.0% Confidence Limit</th>
<th>T Value</th>
<th>Prob Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>-0.00397401</td>
<td>0.01280035</td>
<td>-0.02937588</td>
<td>0.02142786</td>
<td>-0.31</td>
<td>0.7569</td>
</tr>
<tr>
<td>C1 * x</td>
<td>0.001716751</td>
<td>0.0004582565</td>
<td>0.0008073563</td>
<td>0.002626146</td>
<td>3.75</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Estimated Model of SD of Response

\((-0.00397401 + (0.001716751) \times \text{Gestation}) \)

Estimated Z-Score Model

\(Z = \frac{(\text{Response} - (10.31614 - (8.090378E-05) \times \text{Gestation}^2 + (75.65155) \times \frac{1}{\text{Gestation} \times \text{Gestation}})) / (-0.00397401 + (0.001716751) \times \text{Gestation}}) \)

Coefficient and Term
The name of the coefficient and term whose results are shown on this line.

Coefficient Estimate
The estimated value of this coefficient.

Standard Error of Estimate
An estimate of the standard error of the coefficient.
Lower 95% Confidence Limit
The lower value of a 95% confidence interval for this coefficient.

Upper 95% Confidence Limit
The upper value of a 95% confidence interval for this coefficient.

T Value
The value of the t-statistic used to test whether this term is statistically significant.

Prob Level
The significance level or p-value of the test statistic. If this value is 0.05 or less, the t-test is statistically significant.

Estimated Model
This is the estimated model written out so that it can be copied and pasted into another program such as Excel.

Estimated Z-Score Model
This is the estimated z-score model written out so that it can be copied and pasted into another program such as Excel.

Coefficient Estimation Reports in High Precision

Mean Equation - Coefficient Report in High-Precision

<table>
<thead>
<tr>
<th>Coefficient and Term</th>
<th>Coefficient Estimate</th>
<th>Standard Error</th>
<th>Lower 95.0% Confidence Limit</th>
<th>Upper 95.0% Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>10.3161380531194</td>
<td>0.03384301</td>
<td>10.2489690552149</td>
<td>10.3833070510239</td>
</tr>
<tr>
<td>A1*x²</td>
<td>-8.09037797269359E-05</td>
<td>2.342309E-05</td>
<td>-0.000127392125124008</td>
<td>-3.441543298636E-05</td>
</tr>
<tr>
<td>A2*1/x²</td>
<td>75.6515482561129</td>
<td>9.254083</td>
<td>57.2847554176779</td>
<td>94.0183410945479</td>
</tr>
</tbody>
</table>

Standard Deviation Equation - Coefficient Report in High-Precision

<table>
<thead>
<tr>
<th>Coefficient and Term</th>
<th>Coefficient Estimate</th>
<th>Standard Error</th>
<th>Lower 95.0% Confidence Limit</th>
<th>Upper 95.0% Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>-0.00397401029375437</td>
<td>0.01280035</td>
<td>-0.0293758806868975</td>
<td>0.0214278600993888</td>
</tr>
<tr>
<td>C1*x</td>
<td>0.00171675136127743</td>
<td>0.0004582585</td>
<td>0.000807356301336725</td>
<td>0.00262614642121814</td>
</tr>
</tbody>
</table>

Estimated Model of Response

\[(1-(8.09037797269359E-05)*\text{Gestation}^2+(75.6515482561129)*1/(\text{Gestation}*\text{Gestation})) \]

Estimated Model of SD of Response

\[(1+(0.00171675136127743)*\text{Gestation}) \]

Estimated Z-Score Model

\[Z = \frac{(\text{Response} - (1-(8.09037797269359E-05)*\text{Gestation}^2+(75.6515482561129)*1/(\text{Gestation}*\text{Gestation})))}{(1+(0.00171675136127743)*\text{Gestation})} \]

This is a version of the coefficient report in which the coefficients are displayed in high-precision. In some cases, it is important to use all digits when using the estimates.

Shapiro-Wilk Normality Test of Z-Scores

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Test Statistic</th>
<th>Prob Level</th>
<th>Reject Normality at 5% Level?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapiro-Wilk</td>
<td>0.99</td>
<td>0.6878</td>
<td>No</td>
</tr>
</tbody>
</table>

This report shows the result of a test of the normality of the z-scores. If normality is rejected, a different model should be used, possibly one that uses LN(y).
Percentile Report

Model: \(y = A_0 + A_1 x^2 + A_2 x^{-2} + Z_\alpha (C_0 + C_1 x) \)

<table>
<thead>
<tr>
<th>Gestation</th>
<th>Percentiles of Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

This report shows the estimated percentiles at the Gestation values and Percentile values that were selected. Note that ‘Z’ stands for standard normal deviate corresponding to the indicated percentile.

Analysis of Variance Tables

Mean Equation - Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Term(s)</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1</td>
<td>1</td>
<td>10787.3</td>
<td>10787.3</td>
</tr>
<tr>
<td>Model</td>
<td>3</td>
<td>10788.48</td>
<td>10788.61</td>
<td></td>
</tr>
<tr>
<td>Model (Adjusted)</td>
<td>2</td>
<td>1.179512</td>
<td>0.5897558</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>97</td>
<td>0.1960949</td>
<td>0.002021597</td>
<td></td>
</tr>
<tr>
<td>Total (Adjusted)</td>
<td>99</td>
<td>1.375606</td>
<td>0.002021597</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>10788.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Deviation Equation - Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Term(s)</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1</td>
<td>0.1785716</td>
<td>0.1785716</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>2</td>
<td>0.1947882</td>
<td>0.2514067</td>
<td></td>
</tr>
<tr>
<td>Model (Adjusted)</td>
<td>1</td>
<td>0.01621659</td>
<td>0.01621659</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>98</td>
<td>0.1132369</td>
<td>0.001155479</td>
<td></td>
</tr>
<tr>
<td>Total (Adjusted)</td>
<td>99</td>
<td>0.1294535</td>
<td>0.001155479</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>0.3080251</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Term(s)

The labels of the various sources of variation.

DF

The degrees of freedom.

Sum of Squares

The sum of squares associated with this term. Note that these sums of squares are based on Y, the dependent variable. Individual terms are defined as follows:

- **Mean**

The sum of squares associated with the mean of Y. This may or may not be a part of the model. It is presented since it is the amount used to adjust the other sums of squares.

- **Model**

The sum of squares associated with the model.

- **Model (Adjusted)**

The model sum of squares minus the mean sum of squares.

- **Error**

The sum of the squared residuals. This is often called the sum of squares error or just “SSE.”
Reference Intervals – Age-Specific

Total (Adjusted)
The sum of the squared Y values minus the mean sum of squares.

Total
The sum of the squared Y values.

Mean Square
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate of the underlying variation in the data.

Correlation Matrix of Parameters

Mean Equation - Coefficient Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>1.000000</td>
<td>-0.965022</td>
<td>-0.958157</td>
</tr>
<tr>
<td>A1</td>
<td>-0.965022</td>
<td>1.000000</td>
<td>0.882923</td>
</tr>
<tr>
<td>A2</td>
<td>-0.958157</td>
<td>0.882923</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Standard Deviation Equation - Coefficient Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>1.000000</td>
<td>-0.964095</td>
</tr>
<tr>
<td>C1</td>
<td>-0.964095</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

This report displays the correlations of the coefficient estimates.

Predicted Values and Residuals Section

Predicted Values, Residuals, and Z-Scores

Model: \(y = A_0 + A_1x^2 + A_2\frac{1}{x^2} \)

<table>
<thead>
<tr>
<th>Row No.</th>
<th>Gestation (X)</th>
<th>Response (Y)</th>
<th>Predicted Y</th>
<th>Residual of Y</th>
<th>Scaled Residual of y</th>
<th>Standard Deviation of y</th>
<th>Z-Score Value of y</th>
<th>Z-Score Prob of y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.269</td>
<td>10.242</td>
<td>10.249</td>
<td>-0.007</td>
<td>-0.009</td>
<td>0.062</td>
<td>-0.12</td>
<td>0.4526</td>
</tr>
<tr>
<td>2</td>
<td>30.562</td>
<td>10.294</td>
<td>10.322</td>
<td>-0.028</td>
<td>-0.035</td>
<td>0.048</td>
<td>-0.57</td>
<td>0.2844</td>
</tr>
<tr>
<td>3</td>
<td>21.196</td>
<td>10.424</td>
<td>10.448</td>
<td>-0.024</td>
<td>-0.030</td>
<td>0.032</td>
<td>-0.74</td>
<td>0.2303</td>
</tr>
<tr>
<td>4</td>
<td>22.507</td>
<td>10.501</td>
<td>10.424</td>
<td>0.076</td>
<td>0.096</td>
<td>0.035</td>
<td>2.20</td>
<td>0.9861</td>
</tr>
<tr>
<td>5</td>
<td>33.060</td>
<td>10.339</td>
<td>10.297</td>
<td>0.042</td>
<td>0.052</td>
<td>0.053</td>
<td>0.79</td>
<td>0.7861</td>
</tr>
<tr>
<td>6</td>
<td>22.330</td>
<td>10.449</td>
<td>10.428</td>
<td>0.021</td>
<td>0.027</td>
<td>0.034</td>
<td>0.62</td>
<td>0.7322</td>
</tr>
<tr>
<td>7</td>
<td>35.606</td>
<td>10.342</td>
<td>10.273</td>
<td>0.069</td>
<td>0.087</td>
<td>0.057</td>
<td>1.21</td>
<td>0.8865</td>
</tr>
<tr>
<td>8</td>
<td>34.341</td>
<td>10.280</td>
<td>10.285</td>
<td>-0.005</td>
<td>-0.007</td>
<td>0.055</td>
<td>-0.09</td>
<td>0.4623</td>
</tr>
</tbody>
</table>

This report shows the predicted values, residuals, and z-scores.

Row No.
The row number from the dataset.

X
The value of the covariate.

Y
The value of the response.

Predicted Y
The predicted value of the response using only the mean model.
Residual of Y
The value of the residual, the difference between Y and the predicted Y.

Scaled Residual of y
The value of the residual times the scale factor.

Standard Deviation of y
The value of the standard deviation using the standard deviation model.

Z-Score Value of y
The z-score of this row. Most z-scores should be between plus and minus 2 if the data are normally distributed.

Z-Score Prob of y
The probability level of the above z-score assuming the normal distribution.

Plot Section

Response vs Gestation with 95% Reference Interval

Residuals of Response vs Gestation

S.A.R. of Response vs Gestation

Residuals of S.A.R. of Response vs Gestation
Y vs X Plot with Reference Interval

This plot displays the data along with the estimated function and reference interval. It is useful in deciding if the fit is adequate and the reference interval is appropriate.

Residual versus X Plot

This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. A loess curve is overlaid to give you a better understanding of the trends in the data.

S.A.R. vs X Plot

This a scatter plot of the scaled absolute residuals versus X. The line is the model of the standard deviation.

Residual of S.A.R. versus X Plot

This is a scatter plot of the residuals from the S.A.R. fit versus the independent variable, X. Often, the plot will exhibit a funnel shape indicating the changing nature of these residuals. This is to be expected. A loess curve is overlaid to give you a better understanding of any patterns that should be modelled.

Z-Score vs X Plot

This scatter plot displays the z-scores versus the covariate, X. If all has gone well, this plot should show a random pattern.

Normal Probability Plot of Z-Scores

If the z-scores are normally distributed, the data points of the normal probability plot will fall along a straight line. Major deviations from this ideal picture reflect departures from normality. Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a closer examination of the data or model.