Chapter 731

Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model

Introduction

A clinical trial may be employed to test the non-inferiority of a treatment over a control in regard to their survival distributions. Because survival times are not normally distributed and because some survival times are censored, Cox proportional-hazards regression is often used to analyze the data. The formulation for testing the significance of a Cox regression coefficient is identical to the standard logrank test. Thus, the power and sample size formulas for one analysis also work for the other.

The Cox Regression model has the added benefit over the exponential model that it does not assume that the hazard rates are constant, but only that they are proportional. That is, that the hazard ratio remains constant throughout the experiment, even if the hazard rates vary.

This procedure is documented in Chow, Shao, and Wang (2008) which summarizes the work of Schoenfeld (1981, 1983). Note that there was an error in Chow, Shao, and Wang (2008) page 179 which caused the sample size to be doubled. This error has been corrected in this edition.
Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model

Technical Details

Cox’s Proportional Hazards Regression

Cox’s proportional hazards regression is widely used for survival data. The regression model is

\[h(t \mid z) = h(t \mid 0) \exp(bz) \]

where

- \(b \) is the regression coefficient which is equal to \(\log\left(\frac{h(t \mid 1)}{h(t \mid 0)}\right) = \log(HR) \)
- \(z \) is a binary indicator variable of treatment group
- \(t \) is elapsed time
- \(h(t \mid z) \) is the hazard rate at time \(t \), given covariate \(z \)
- \(HR \) is the hazard ratio \(\frac{h(t \mid 1)}{h(t \mid 0)} \)

Non-Inferiority Hypothesis

Lower Hazards Better

Assuming that lower hazard rates are better, non-inferiority means that the treatment hazard rate is at most, only slightly higher than the control hazard rate. We find it more convenient to state the hypotheses in terms of the hazard ratio, \(HR \), rather than the Cox regression coefficient, \(b \). Remembering that \(b = \log(HR) \) and assuming that \(HR_0 > 1 \), non-inferiority requires that \(HR < HR_0 \). Here, \(HR_0 \) is the boundary of clinical insignificance or the non-inferiority boundary.

The statistical hypotheses that results in the conclusion of non-inferiority when the null hypothesis is rejected is

\[H_0: \log(HR) \geq \log(HR_0) \quad \text{versus} \quad H_a: \log(HR) < \log(HR_0) \]

Higher Hazards Better

Assuming that higher hazard rates are better, non-inferiority means that the treatment hazard rate is at most, only slightly lower than the control hazard rate. We find it more convenient to state the hypotheses in terms of the hazard ratio, \(HR \), rather than the Cox regression coefficient, \(b \). Remembering that \(b = \log(HR) \) and assuming that \(HR_0 < 1 \), non-inferiority requires that \(HR > HR_0 \). Here, \(HR_0 \) is called the boundary of clinical insignificance or the non-inferiority boundary.

The statistical hypotheses that results in the conclusion of non-inferiority when the null hypothesis is rejected is

\[H_0: \log(HR) \leq \log(HR_0) \quad \text{versus} \quad H_a: \log(HR) > \log(HR_0) \]
Test Statistic

It can be shown that the test of b based on the partial likelihood method of Cox (1972) coincides with the common logrank test statistic. When testing non-inferiority, you can use b from a Cox regression or calculate the modified logrank statistic as follows.

Logrank Test

The logrank test statistic is

$$L = \frac{\sum_{k=1}^{K} \left(I_k - \frac{Y_{1i}HR_0}{Y_{1i}HR_0 + Y_{2i}} \right)}{\left[\sum_{k=1}^{K} \left(\frac{Y_{1i}Y_{2i}HR_0}{Y_{1i}HR_0 + Y_{2i}} \right)^2 \right]^{1/2}}$$

where K is the number of deaths, Y_{ij} is the number of subjects at risk just prior to the jth observed event in the ith group, and I_k is a binary variable indicating whether the kth even is from group 1 or not.

The distribution of L is approximately normal with mean $(\log(HR) - \log(HR_0))\sqrt{P_1P_2dN}$ and unit variance, where

- P_1 is the proportion of N that is in the control group
- P_2 is the proportion of N that is in the treatment group
- N is the total sample size
- N_1 is the sample size from the control group, $N_1 = N(P_1)$
- N_2 is the sample size from the treatment group, $N_2 = N(P_2)$
- Pev_1 is probability of the event of interest in the control group
- Pev_2 is probability of the event of interest in the treatment group
- d is the overall probability of an event, $d = Pev_1P_1 + Pev_2P_2$
- b is the Cox regression coefficient, $b = \log(HR)$

Power Calculations

The power of this test is given by

$$\Phi \left((\log(HR_1) - \log(HR_0))\sqrt{P_1P_2dN} - z_{1-\alpha} \right)$$

where HR_1 is the actual value of the hazard ratio under the alternative hypothesis.
Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter.

Design Tab

The Design tab contains most of the parameters and options that you will be concerned with.

Solve For

This option specifies the parameter to be solved for from the other parameters. The parameters that may be selected are Power or Sample Size. Select Sample Size when you want to calculate the sample size needed to achieve a given power and alpha level. Select Power when you want to calculate the power.

Test Direction

Higher Hazards Are

Select the direction of the alternative hypothesis, Ha. In most studies, a lower hazard rate is better since it indicates a longer life-time. However, in some situations, a higher hazard rate is desired. For example, if the length of life of disease organisms is being studied.

- **Worse (Ha: HR < HR0)**

 Since lower is better, non-inferiority is concluded when the hazard ratio (HR) is less than a clinically acceptable ratio above one, represented by HR0. For example, HR0 might be set to 1.2 or 1.25.

- **Better (Ha: HR > HR0)**

 Since higher is better, non-inferiority is concluded when the hazard ratio (HR) is greater than a clinically acceptable ratio below one, represented by HR0. For example, HR0 might be set to 0.8 or 0.75.

Power and Alpha

Power

This option specifies one or more values for power. Power is the probability of rejecting a false null hypothesis and is equal to one minus Beta. Beta is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal survival curves when in fact the curves are different.

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for power. Now, 0.90 (Beta = 0.10) is also commonly used.

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be entered.

Alpha

This option specifies one or more values for the probability of a type-I error. A type-I error occurs when you reject the null hypothesis of equal survival curves when in fact the curves are equal.

Values of alpha must be between zero and one. Historically, the value of 0.05 has been used for alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a type-I error you are willing to take in your experimental situation.

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.
Sample Size (When Solving for Sample Size)

Group Allocation
Select the option that describes the constraints on \(N_1 \) or \(N_2 \) or both.

The options are

- **Equal (\(N_1 = N_2 \))**

 This selection is used when you wish to have equal sample sizes in each group. Since you are solving for both sample sizes at once, no additional sample size parameters need to be entered.

- **Enter \(R = N_2/N_1 \), solve for \(N_1 \) and \(N_2 \)**

 For this choice, you set a value for the ratio of \(N_2 \) to \(N_1 \), and then PASS determines the needed \(N_1 \) and \(N_2 \), with this ratio, to obtain the desired power. An equivalent representation of the ratio, \(R \), is

 \[
 N_2 = R \times N_1.
 \]

 \(R \) must be greater than 0. If \(R < 1 \), then \(N_2 \) will be less than \(N_1 \); if \(R > 1 \), then \(N_2 \) will be greater than \(N_1 \). You can enter a single or a series of values.

- **Enter percentage in Group 1, solve for \(N_1 \) and \(N_2 \)**

 For this choice, you set a value for the percentage of the total sample size that is in Group 1, and then PASS determines the needed \(N_1 \) and \(N_2 \) with this percentage to obtain the desired power.

R (Group Sample Size Ratio)

This option is displayed only if Group Allocation = “Enter \(R = N_2/N_1 \), solve for \(N_1 \) and \(N_2 \).”

\(R \) is the ratio of \(N_2 \) to \(N_1 \). That is,

\[
R = \frac{N_2}{N_1}.
\]

Use this value to fix the ratio of \(N_2 \) to \(N_1 \) while solving for \(N_1 \) and \(N_2 \). Only sample size combinations with this ratio are considered.

\(N_2 \) is related to \(N_1 \) by the formula:

\[
N_2 = \lceil R \times N_1 \rceil,
\]

where the value \(\lceil Y \rceil \) is the next integer \(\geq Y \).

For example, setting \(R = 2.0 \) results in a Group 2 sample size that is double the sample size in Group 1 (e.g., \(N_1 = 10 \) and \(N_2 = 20 \), or \(N_1 = 50 \) and \(N_2 = 100 \)).

Percent in Group 1

This option is displayed only if Group Allocation = “Enter percentage in Group 1, solve for \(N_1 \) and \(N_2 \).”

Use this value to fix the percentage of the total sample size allocated to Group 1 while solving for \(N_1 \) and \(N_2 \). Only sample size combinations with this Group 1 percentage are considered. Small variations from the specified percentage may occur due to the discrete nature of sample sizes.

The Percent in Group 1 must be greater than 0 and less than 100. You can enter a single or a series of values.
Sample Size (When Not Solving for Sample Size)

Group Allocation
Select the option that describes how individuals in the study will be allocated to Group 1 and to Group 2.

The options are

- **Equal (N1 = N2)**
 This selection is used when you wish to have equal sample sizes in each group. A single per group sample size will be entered.

- **Enter N1 and N2 individually**
 This choice permits you to enter different values for \(N_1 \) and \(N_2 \).

- **Enter N1 and R, where N2 = R \times N1**
 Choose this option to specify a value (or values) for \(N_1 \), and obtain \(N_2 \) as a ratio (multiple) of \(N_1 \).

- **Enter total sample size and percentage in Group 1**
 Choose this option to specify a value (or values) for the total sample size (\(N \)), obtain \(N_1 \) as a percentage of \(N \), and then \(N_2 \) as \(N - N_1 \).

Sample Size Per Group
This option is displayed only if Group Allocation = “Equal (N1 = N2).”

The Sample Size Per Group is the number of items or individuals sampled from each of the Group 1 and Group 2 populations. Since the sample sizes are the same in each group, this value is the value for \(N_1 \), and also the value for \(N_2 \).

The Sample Size Per Group must be \(\geq 2 \). You can enter a single value or a series of values.

N1 (Sample Size, Group 1)
This option is displayed if Group Allocation = “Enter N1 and N2 individually” or “Enter N1 and R, where N2 = R \times N1.”

\(N_1 \) is the number of items or individuals sampled from the Group 1 population.

\(N_1 \) must be \(\geq 2 \). You can enter a single value or a series of values.

N2 (Sample Size, Group 2)
This option is displayed only if Group Allocation = “Enter N1 and N2 individually.”

\(N_2 \) is the number of items or individuals sampled from the Group 2 population.

\(N_2 \) must be \(\geq 2 \). You can enter a single value or a series of values.
R (Group Sample Size Ratio)

This option is displayed only if Group Allocation = “Enter N1 and R, where N2 = R * N1.”

R is the ratio of N2 to N1. That is,

\[R = \frac{N2}{N1} \]

Use this value to obtain N2 as a multiple (or proportion) of N1.

N2 is calculated from N1 using the formula:

\[N2 = \lceil R \times N1 \rceil, \]

where the value \(\lceil Y \rceil \) is the next integer ≥ Y.

For example, setting \(R = 2.0 \) results in a Group 2 sample size that is double the sample size in Group 1.

R must be greater than 0. If \(R < 1 \), then N2 will be less than N1; if \(R > 1 \), then N2 will be greater than N1. You can enter a single value or a series of values.

Total Sample Size (N)

This option is displayed only if Group Allocation = “Enter total sample size and percentage in Group 1.”

This is the total sample size, or the sum of the two group sample sizes. This value, along with the percentage of the total sample size in Group 1, implicitly defines N1 and N2.

The total sample size must be greater than one, but practically, must be greater than 3, since each group sample size needs to be at least 2.

You can enter a single value or a series of values.

Percent in Group 1

This option is displayed only if Group Allocation = “Enter total sample size and percentage in Group 1.”

This value fixes the percentage of the total sample size allocated to Group 1. Small variations from the specified percentage may occur due to the discrete nature of sample sizes.

The Percent in Group 1 must be greater than 0 and less than 100. You can enter a single value or a series of values.

Sample Size – Proportion of Events Observed

Pev1 (Probability of a Control Event)

Enter one or more values for Pev1, the average probability of an event (death) for each individual in the control group. The number of events in the control group is equal to Pev1 x N1.

Range

0 < Pev1 < 1

Pev2 (Probability of a Treatment Event)

Enter one or more values for Pev2, the average probability of an event (death) for each individual in the control group. The number of events in the control group is equal to Pev2 x N2.

Range

0 < Pev2 < 1
Effect Size

HR1 (Actual Hazard Ratio)
Specify one or more hazard ratios, HR1, at which the power is calculated. HR is defined as the treatment hazard rate (h2) divided by the control hazard rate (h1). HR1 represents the assumed value at which the power of rejecting H0 is calculated. In non-inferiority tests, this ratio is usually assumed to be 1.0.

Range
If lower hazards are better, the range is 0 < HR1 < HR0. Typical values are between 0.9 and 2.0.
If higher hazards are better, the range is HR1 > HR0 > 0. Typical values are from 0.25 up to 1.1.
Press the “Survival Parameter Conversion Tool” button to estimate reasonable values based on median survival times, hazard rates, or the proportion surviving.

HR0 (Non-Inferiority Hazard Ratio)
HR0 is the largest or smallest that the hazard ratio can be and still conclude clinical non-inferiority.

Range
If lower hazards are better, the range is HR0 > 1. Typical values are between 1.01 and 4.0.
If higher hazards are better, the range is 0 < HR0 < 1. Typical values are from 0.25 up to 0.99.
Example 1 – Finding the Sample Size

A researcher is planning a non-inferiority trial using a parallel, two-group, equal sample allocation design to compare the survivability of a new treatment with that of the current treatment. The non-inferiority hazard ratio is 1.2. The desired power is 0.90 and significance level is 0.025. HR1 will be between 0.5 and 1. The probability of observing an event is 0.50 in the control group and 0.30 in the treatment group.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model procedure window by expanding Survival, then Two Survival Curves, then clicking Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model. You may then make the appropriate entries as listed below or open Example 1 by going to the File menu and choosing Open Example Template.

Option	Value
Design Tab | Sample Size
Solve For | Sample Size
Higher Hazards Are | Worse (Ha: HR < HR0)
Power | 0.90
Alpha | 0.025
Group Allocation | Equal (N1 = N2)
Pev1 (Event Probability in Group 1) | 0.5
Pev2 (Event Probability in Group 2) | 0.3
HR1 (Actual Hazard Ratio) | 0.5 to 1 by 0.1
HR0 (Non-Inferiority Hazard Ratio) | 1.2

Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Power</th>
<th>Total Sample Size</th>
<th>Control Sample Size</th>
<th>Trmtmnt Sample Size</th>
<th>Percent Control</th>
<th>Actual Hazard Ratio</th>
<th>Non-Inf Hazard Ratio</th>
<th>Control Prob Event</th>
<th>Trmtmnt Prob Event</th>
<th>Control Events</th>
<th>Trmtmnt Events</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9019</td>
<td>138</td>
<td>69</td>
<td>69</td>
<td>50.0</td>
<td>0.500</td>
<td>1.200</td>
<td>0.300</td>
<td>34.5</td>
<td>20.7</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.9001</td>
<td>219</td>
<td>109</td>
<td>110</td>
<td>50.0</td>
<td>0.600</td>
<td>1.200</td>
<td>0.300</td>
<td>54.5</td>
<td>33.0</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.9003</td>
<td>362</td>
<td>181</td>
<td>181</td>
<td>50.0</td>
<td>0.700</td>
<td>1.200</td>
<td>0.300</td>
<td>90.5</td>
<td>54.3</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.9004</td>
<td>640</td>
<td>320</td>
<td>320</td>
<td>50.0</td>
<td>0.800</td>
<td>1.200</td>
<td>0.300</td>
<td>160.0</td>
<td>96.0</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.9001</td>
<td>1270</td>
<td>635</td>
<td>635</td>
<td>50.0</td>
<td>0.900</td>
<td>1.200</td>
<td>0.300</td>
<td>317.5</td>
<td>190.5</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.9001</td>
<td>3162</td>
<td>1581</td>
<td>1581</td>
<td>50.0</td>
<td>1.000</td>
<td>1.200</td>
<td>0.300</td>
<td>790.5</td>
<td>474.3</td>
<td>0.025</td>
<td></td>
</tr>
</tbody>
</table>

References

Report Definitions

- **Power** is the probability of rejecting a false null hypothesis. Power should be close to one.
- **N** is the total sample size.
- **N1 and N2** are the sample sizes of the control and treatment groups, respectively.
- **%N1** is the percent of the total sample that is in group 1, the control group.
- **HR = h2/h1** is the hazard ratio.
- **HR1 is the actual hazard ratio at which power is calculated.**
- **HR0 is the non-inferiority hazard ratio.**
- **Pev1 and Pev2** are the probabilities of an event in the control and the treatment groups, respectively.
- **E1 and E2** are the number of events required in the control and the treatment groups, respectively.
- **Alpha** is the probability of rejecting a true null hypothesis.

Summary Statements

A non-inferiority test with an overall sample size of 138 subjects (of which 69 are in the control group and 69 are in the treatment group) achieves 90% power at a 0.025 significance level when the non-inferiority bound is 1.200 and the hazard ratio is actually 0.500. The number of events required to achieve this power is 55.2. It is anticipated that the proportion of subjects observed with the event during the study is 0.500 for the control group and 0.300 for the treatment group. These results assume that the hazard ratio is constant throughout the study and that Cox proportional hazards regression or the non-inferiority logrank test is used to analyze the data.

These reports show the values of each of the parameters, one scenario per row.

Plots Section

This plot shows the relationship between HR1 and N.
Example 2 – Validation using Chow et al. (2008)

Chow et al. (2008) page 179 presents an example that we will use for validation. In their example, HR₁ = 2, log(HR₀) = 0.3, Pₑᵥ₁ = Pₑᵥ₂ = 0.8, P₁ = 0.5, alpha = 0.05, and power = 0.8. They obtained a value of about 100 per group (this is a correction from the 200 that they originally printed in error).

Actually, this example is for a superiority test, but if HR₁ and HR₀ are switched, it can be used to validate the non-inferiority test.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model procedure window by expanding Survival, then Two Survival Curves, then clicking Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Survival Curves Using Cox’s Proportional Hazards Model. You may then make the appropriate entries as listed below, or open Example 2 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>Sample Size</td>
</tr>
<tr>
<td>Higher Hazards Are</td>
<td>Worse (Ha: HR < HR₀)</td>
</tr>
<tr>
<td>Power</td>
<td>0.80</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>Group Allocation</td>
<td>Equal (N₁ = N₂)</td>
</tr>
<tr>
<td>Pₑᵥ₁ (Event Probability in Group 1)</td>
<td>0.8</td>
</tr>
<tr>
<td>Pₑᵥ₂ (Event Probability in Group 2)</td>
<td>Pₑᵥ₁</td>
</tr>
<tr>
<td>HR₁ (Actual Hazard Ratio)</td>
<td>1.35 (which is exp(0.3))</td>
</tr>
<tr>
<td>HR₀ (Non-Inferiority Hazard Ratio)</td>
<td>2</td>
</tr>
</tbody>
</table>

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Numeric Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotheses: H₀: HR ≥ HR₀ vs. Ha: HR < HR₀</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0.8015</td>
</tr>
<tr>
<td>N</td>
<td>201</td>
</tr>
<tr>
<td>N1</td>
<td>100</td>
</tr>
<tr>
<td>N2</td>
<td>101</td>
</tr>
<tr>
<td>%N₁</td>
<td>50.0</td>
</tr>
<tr>
<td>Actual HR Ratio</td>
<td>1.350</td>
</tr>
<tr>
<td>Non-Infer HR Ratio</td>
<td>2.000</td>
</tr>
<tr>
<td>Control Prob Event</td>
<td>Pₑᵥ₁ 0.800</td>
</tr>
<tr>
<td>Trtmnt Prob Event</td>
<td>Pₑᵥ₂ 0.800</td>
</tr>
<tr>
<td>Control Events</td>
<td>E₁ 80.0</td>
</tr>
<tr>
<td>Trtmnt Events</td>
<td>E₂ 80.8</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.050</td>
</tr>
</tbody>
</table>

PASS also calculates the value of N = 201 which is within rounding of the 200 that Chow calculated.