Chapter 488

Paired T-Tests for Superiority by a Margin

Introduction

This procedure computes power and sample size for superiority by a margin tests in paired designs in which the paired differences are distributed as a normal random variable.

The details of sample size calculation for the paired design are presented in the Paired T-Tests chapter and they will not be duplicated here. This chapter only discusses those changes necessary for superiority by a margin tests. Sample size formulas for superiority by a margin tests of a single mean are presented in Chow et al. (2018) page 43.

The one-sample t-test is used to test whether a population mean is different from a specific value. When the data are differences between paired values, this test is known as the paired t-test.

Paired Designs

Paired data may occur because two measurements are made on the same subject or because measurements are made on two subjects that have been matched according to other variables. Hypothesis tests on paired data can be analyzed by considering the difference between the paired items as the response. The distribution of differences is usually symmetric. In fact, the distribution must be symmetric if the individual distributions of the two items are identical. Hence, the paired t-test is appropriate for paired data even when the distributions of the individual items are not normal.

The Statistical Hypotheses

Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their power and sample size could be calculated using the One-Sample T-Tests procedure. However, at the urging of our users, we have developed this procedure which provides the input and output options that are convenient for superiority hypotheses. This section will review the specifics of superiority testing.

Remember that in the usual t-test setting with δ defined as the mean paired difference, the null (H_0) and alternative (H_1) hypotheses for one-sided upper-tail tests are defined as

\[H_0: \delta \leq \delta_0 \quad \text{versus} \quad H_1: \delta > \delta_0 \]

Rejecting H_0 implies that the mean is larger than the value δ_0. This test is called an upper-tail test because H_0 is rejected in samples in which the sample mean is larger than δ_0.
The lower-tail test is

\[H_0: \delta \geq \delta_0 \quad \text{versus} \quad H_1: \delta < \delta_0 \]

Superiority by a margin tests are special cases of the above directional tests. It will be convenient to adopt the following specialize notation for the discussion of these tests.

Parameter	PASS Input/Output	Interpretation
\(\delta \) | \(\delta \) | Population mean paired difference. This is the mean of paired differences in the population. This parameter will be estimated by the study.
\(\delta_1 \) | \(\delta_1 \) | Actual paired difference at which power is calculated. This is the value of the mean paired difference at which power is calculated.
\(M_S \) | SM | Margin of superiority. This is a tolerance value that defines the magnitude of difference that is required for practical importance. This may be thought of as the largest difference that is considered to be trivial. The sign is determined by the specific design. This value is used to compute the bound, \(\delta_0 \).

Superiority by a Margin Tests

A superiority by a margin test tests that the mean of paired differences is greater than (or less than) zero by more than a small superiority margin. The actual direction of the hypothesis depends on the whether higher values of the response are good or bad.

Case 1: High Values Good

In this case, higher values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the mean paired difference is greater than zero by at least the margin of superiority. The value of \(\delta \) at which power is calculated must be greater than \(|M_S|\). The null and alternative hypotheses with \(\delta_0 = |M_S| \) are

\[H_0: \delta \leq |M_S| \quad \text{versus} \quad H_1: \delta > |M_S| \]

Case 2: High Values Bad

In this case, lower values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the mean is less than the reference value by at least the margin of superiority. The value of \(\delta \) at which power is calculated must be less than \(-|M_S|\). The null and alternative hypotheses with \(\delta_0 = -|M_S| \) are

\[H_0: \delta \geq -|M_S| \quad \text{versus} \quad H_1: \delta < -|M_S| \]
Paired T-Test Statistic

The paired \(t \)-test assumes that the paired differences, \(X_i \), are a simple random sample from a population of normally-distributed difference values that all have the same mean and variance. This assumption implies that the data are continuous and their distribution is symmetric. The calculation of the \(t \)-test proceeds as follows

\[
 t_{n-1} = \frac{\bar{X} - \delta_0}{s/\sqrt{n}}
\]

where

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n},
\]

\[
s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}},
\]

and \(\delta_0 \) is the value of the mean hypothesized by the null hypothesis which depends on the magnitude and sign of \(M_S \).

The significance of the test statistic is determined by computing the p-value. If this p-value is less than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be reached.

Power Calculation for the Paired T-Test

When the standard deviation is unknown, the power is calculated as follows for a directional alternative (one-tailed test) in which \(\delta_1 > \delta_0 \).

1. Find \(t_\alpha \) such that \(1 - T_{df}(t_\alpha) = \alpha \), where \(T_{df}(t_\alpha) \) is the area under a central-\(t \) curve to the left of \(x \) and \(df = n - 1 \).
2. Calculate: \(X_1 = \delta_0 + t_\alpha \frac{\sigma}{\sqrt{n}} \)
3. Calculate the noncentrality parameter: \(\lambda = \frac{\delta_1 - \delta_0}{\sqrt{n}} \)
4. Calculate: \(t_1 = \frac{X_1 - \delta_1}{\sqrt{n}} + \lambda \).
5. Power = \(1 - T'_{df, \lambda}(t_1) \), where \(T'_{df, \lambda}(x) \) is the area to the left of \(x \) under a noncentral-\(t \) curve with degrees of freedom \(df \) and noncentrality parameter \(\lambda \).
Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter.

Design Tab

The Design tab contains most of the parameters and options that will be of interest.

Solve For

This option specifies the parameter to be calculated from the values of the other parameters. Under most conditions, you would select either Power or Sample Size.

Select Sample Size when you want to determine the sample size needed to achieve a given power and alpha error level.

Select Power when you want to calculate the power.

Test

Higher Means Are

This option defines whether higher values of the response variable are to be considered better or worse. The choice here determines the direction of the superiority by a margin test. Note that δ is the population mean of paired differences.

- **Better (H1: $\delta > SM$)**

 If higher means are Better the null hypothesis is $H_0: \delta \leq SM$, and the alternative hypothesis is $H_1: \delta > SM$.

- **Worse (H1: $\delta < -SM$)**

 If higher means are Worse the null hypothesis is $H_0: \delta \geq -SM$, and the alternative hypothesis is $H_1: \delta < -SM$.

Population Size

This is the number of subjects in the population. Usually, you assume that samples are drawn from a very large (infinite) population. Occasionally, however, situations arise in which the population of interest is of limited size. In these cases, appropriate adjustments must be made.

When a finite population size is specified, the standard deviation is reduced according to the formula:

$$ \sigma_1^2 = \left(1 - \frac{n}{N} \right) \sigma^2 $$

where n is the sample size, N is the population size, σ is the original standard deviation, and σ_1 is the new standard deviation.

The quantity n/N is often called the sampling fraction. The quantity $\left(1 - \frac{n}{N} \right)$ is called the finite population correction factor.
Power and Alpha

Power

This option specifies one or more values for power. Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for power. Now, 0.90 (Beta = 0.10) is also commonly used.

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be entered.

Alpha

This option specifies one or more values for the probability of a type-I error. A type-I error occurs when a true null hypothesis is rejected.

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a type-I error you are willing to take in your experimental situation.

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.

Sample Size

N (Sample Size)

This option specifies one or more values of the sample size, the number of individuals in the study. This value must be an integer greater than one. You may enter a list of values using the syntax 50 100 150 200 250 or 50 to 250 by 50.

Effect Size – Means

SM (Superiority Margin)

This is the magnitude of the margin of superiority for the mean of paired differences. It should be entered as a positive number. If a negative value is entered, the absolute value is used.

When higher means are better, this value is the distance above zero that is required for the new treatment to be considered superior to the reference.

When higher means are worse, this value is the distance below zero that is required for the new treatment to be considered superior to the reference.

δ1 (Mean of Paired Differences)

Enter a value (or range of values) for the mean of paired differences at which power and sample size are calculated. This value indicates the minimum detectible paired difference.

When higher means are better, this value should be greater than SM. When higher means are worse, this value should be less than -SM.

Effect Size – Standard Deviation

σ (Std Dev of Paired Differences)

Enter an estimate of the standard deviation of the paired differences (must be positive).

When this value is not known, you must supply an estimate of it. PASS includes a special tool for estimating the standard deviation. This tool may be loaded by pressing the SD button. Refer to the Standard Deviation Estimator chapter for further details.
Example 1 – Power Analysis

Suppose that a test is to be conducted to determine if a new cancer treatment improves the mean bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 gm/cm. Clinicians decide that if the treatment increases AMBD by more than 5% (0.000115 gm/cm), it generates a significant health benefit. They also want to consider what would happen if the margin of superiority is set to 2.5% (0.0000575 gm/cm). The standard deviation of paired differences is 0.000300 gm/cm.

The analysis will be a superiority test using the paired t-test at the 0.025 significance level. Power is to be calculated assuming that the new treatment has 7.5% improvement on AMBD. Several sample sizes between 20 and 300 will be analyzed. The researchers want to achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports and plots easier to read.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Paired T-Tests for Superiority by a Margin procedure window by expanding Means, then Paired Means, then clicking on Superiority by a Margin, and then clicking on Paired T-Tests for Superiority by a Margin. You may then make the appropriate entries as listed below, or open Example 1 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>Power</td>
</tr>
<tr>
<td>Higher Means Are</td>
<td>Better (H1: $\delta > SM$)</td>
</tr>
<tr>
<td>Population Size</td>
<td>Infinite</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.025</td>
</tr>
<tr>
<td>N (Sample Size)</td>
<td>20 40 60 80 100 150 200 300</td>
</tr>
<tr>
<td>SM (Superiority Margin)</td>
<td>0.575 1.15</td>
</tr>
<tr>
<td>δ_1 (Mean of Paired Differences)</td>
<td>1.725</td>
</tr>
<tr>
<td>σ (Std Dev of Paired Differences)</td>
<td>3</td>
</tr>
</tbody>
</table>

Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>Superiority Margin</th>
<th>Mean of Paired Differences</th>
<th>Standard Deviation</th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36990</td>
<td>20</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.63010</td>
</tr>
<tr>
<td>0.65705</td>
<td>40</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.34295</td>
</tr>
<tr>
<td>0.83164</td>
<td>60</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.16836</td>
</tr>
<tr>
<td>0.92317</td>
<td>80</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.07683</td>
</tr>
<tr>
<td>0.96682</td>
<td>100</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.03318</td>
</tr>
<tr>
<td>0.99658</td>
<td>150</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.00342</td>
</tr>
<tr>
<td>0.99970</td>
<td>200</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.00030</td>
</tr>
<tr>
<td>1.00000</td>
<td>300</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.12601</td>
<td>20</td>
<td>1.150</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.87399</td>
</tr>
</tbody>
</table>

(report continues)
Report Definitions
Power is the probability of rejecting a false null hypothesis. It should be close to one.
N is the sample size, the number of subjects (or pairs) in the study.
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is the distance above the reference value that is required to be considered superior.
δ is the mean of paired differences.
δ1 is the value of the mean of paired differences at which power and sample size are calculated.
σ is the standard deviation of paired differences for the population.
Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be small.

Summary Statements
A sample size of 20 achieves 37% power to detect superiority using a one-sided paired t-test when the superiority margin is 0.575 and the actual mean of paired differences is 1.725. The estimated standard deviation of paired differences is 3.0. The significance level (alpha) of the test is 0.025.

The above report shows that for SM = 1.15, the sample size necessary to obtain 90% power is just under 300. However, if SM = 0.575, the required sample size is only about 75.
Example 2 – Finding the Sample Size

Continuing with Example 1, the researchers want to know the exact sample size for each value of SM to achieve 90% power.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the _Paired T-Tests for Superiority by a Margin_ procedure window by expanding Means, then Paired Means, then clicking on Superiority by a Margin, and then clicking on Paired T-Tests for Superiority by a Margin. You may then make the appropriate entries as listed below, or open Example 2 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>Sample Size</td>
</tr>
<tr>
<td>Higher Means Are</td>
<td>Better (H1: (\delta > SM))</td>
</tr>
<tr>
<td>Population Size</td>
<td>Infinite</td>
</tr>
<tr>
<td>Power</td>
<td>0.90</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.025</td>
</tr>
<tr>
<td>SM (Superiority Margin)</td>
<td>0.575 1.15</td>
</tr>
<tr>
<td>(\delta_1) (Mean of Paired Differences)</td>
<td>1.725</td>
</tr>
<tr>
<td>(\sigma) (Std Dev of Paired Differences)</td>
<td>3</td>
</tr>
</tbody>
</table>

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>SM</th>
<th>(\delta_1)</th>
<th>(\sigma)</th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90215</td>
<td>74</td>
<td>0.575</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.09785</td>
</tr>
<tr>
<td>0.90005</td>
<td>288</td>
<td>1.150</td>
<td>1.725</td>
<td>3.0</td>
<td>0.025</td>
<td>0.09995</td>
</tr>
</tbody>
</table>

This report shows the exact sample size requirement for each value of SM.
Example 3 – Validation

This procedure uses the same mechanics as the Paired T-Tests for Non-Inferiority procedure. We refer the user to Example 3 of Chapter 480 for the validation.