Chapter 457

Superiority by a Margin Tests for the Ratio of Two Poisson Rates

Introduction

This procedure may be used to calculate power and sample size for superiority by a margin tests involving the ratio of two Poisson rates. This procedure includes the option of accounting for over-dispersion.

The calculation details upon which this procedure is based are found in Zhu (2016). Some of the details are summarized below.

Technical Details

Definition of Terms

The following table presents the various terms that are used.

<table>
<thead>
<tr>
<th>Group</th>
<th>1 (Control)</th>
<th>2 (Treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>N_1</td>
<td>N_2</td>
</tr>
<tr>
<td>Individual event rates</td>
<td>λ_1</td>
<td>λ_2</td>
</tr>
</tbody>
</table>

Dispersion parameter: φ ($\varphi > 1$ implies over-dispersion; $\varphi < 1$ implies under-dispersion)

Average exposure time: μ_t

Superiority margin ratio: R_0 ($R_0 > 1$ when higher rates are better; $R_0 < 1$ when higher rates are worse)

Sample size ratio: $\theta = \frac{N_2}{N_1}$
Hypotheses

When higher rates are better, the superiority by a margin test hypotheses are

\[H_0: \frac{\lambda_2}{\lambda_1} \leq R_0 \quad \text{vs.} \quad H_1: \frac{\lambda_2}{\lambda_1} > R_0 \]

where \(R_0 > 1 \).

When higher rates are worse, the superiority by a margin test hypotheses are

\[H_0: \frac{\lambda_2}{\lambda_1} \geq R_0 \quad \text{vs.} \quad H_1: \frac{\lambda_2}{\lambda_1} < R_0 \]

where \(R_0 < 1 \).

Sample Size and Power Calculations

Sample Size Calculation

Zhu (2016) bases the sample size calculations on a non-inferiority test derived from a Poisson regression model. The calculations for a superiority by a margin test are the same. The sample size calculation is

\[
N_1 \geq \frac{(z_{\alpha}\sqrt{V_0} + z_{\beta}\sqrt{V_1})^2}{(\log R_0 - \log(\lambda_2/\lambda_1))^2}
\]

\[N_2 = \theta N_1 \]

where

\[V_1 = \frac{\varphi \mu_t (1 + \frac{1}{\theta \lambda_2})}{\lambda_1} \]

and \(V_0 \) may be calculated in either of two ways.

\(V_0 \) Calculation Method 1 (using assumed true rates)

\[V_{01} = \frac{\varphi \mu_t (1 + \frac{1}{\theta \lambda_2})}{\lambda_1} \]

Using Method 1, \(V_0 \) and \(V_1 \) are equal.

\(V_0 \) Calculation Method 2 (fixed marginal total or restricted maximum likelihood estimation)

\[V_{02} = \frac{\varphi (1 + R_0 \theta)^2}{\mu_t R_0 \theta (\lambda_1 + \theta \lambda_2)} \]

Zhu (2016) did not give a recommendation regarding whether Method 1 or Method 2 should be used, except to say that “sample sizes calculated using Method 2 are slightly larger compared to those calculated by Method 1 for most simulated scenarios…”.

Power Calculation

The corresponding power calculation to the sample size calculation above is

\[
\text{Power} \geq 1 - \Phi \left(\frac{\sqrt{N_1} (\log R_0 - \log(\lambda_2/\lambda_1)) - z_{\alpha}\sqrt{V_0}}{\sqrt{V_1}} \right)
\]
Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter.

Design Tab

The Design tab contains the parameters associated with this test such as the Poisson rates, sample sizes, alpha, and power.

Solve For

This option specifies the parameter to be solved for from the other parameters.

Test

Higher Poisson Rates Are

Specify whether higher Poisson rates are better or worse. This selection determines the direction of the null and alternative hypotheses. When higher rates are better, the superiority by a margin test hypotheses are

\[H_0: \frac{\lambda_2}{\lambda_1} \leq R_0 \text{ vs. } H_1: \frac{\lambda_2}{\lambda_1} > R_0, \text{ and } R_0 > 1. \]

When higher rates are worse (lower are better), the superiority by a margin test hypotheses are

\[H_0: \frac{\lambda_2}{\lambda_1} \geq R_0 \text{ vs. } H_1: \frac{\lambda_2}{\lambda_1} < R_0, \text{ and } R_0 < 1. \]

Variance Calculation Method

Select among the two methods for calculating the V0 variance component (see the documentation above for details).

- **Using Assumed True Rates**

 For this choice, the variance component V0 is based the values entered for \(\lambda_1 \) and \(\lambda_2 \).

- **Fixed Marginal Total or REML**

 This method assumes a fixed number of events. This method gives the same result as that derived using restricted maximum likelihood estimation.

Power and Alpha

Power

This option specifies one or more values for power. Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority when in fact the treatment mean is non-inferior.

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for power. Now, 0.90 (Beta = 0.10) is also commonly used.

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be entered.
Alpha

This option specifies one or more values for the probability of a type-I error. A type-I error occurs when a true null hypothesis is rejected. In this procedure, a type-I error occurs when rejecting the null hypothesis of inferiority when in fact the treatment group is not inferior to the reference group.

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. This means that about one test in twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a type-I error you are willing to take in your experimental situation.

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.

μ(t) (Average Exposure Time)

Enter a value (or range of values) for the average exposure (observation) time for each subject in each group. A value of one is commonly entered when exposure times are all equal. The range is $\mu(t) > 0$. You can enter a single value such as 1 or a series of values such as 0.8 0.9 1 or 0.8 to 1.2 by 0.1.

Sample Size (When Solving for Sample Size)

Group Allocation

Select the option that describes the constraints on N_1 or N_2 or both.

The options are

- **Equal ($N_1 = N_2$)**

 This selection is used when you wish to have equal sample sizes in each group. Since you are solving for both sample sizes at once, no additional sample size parameters need to be entered.

- **Enter N_2, solve for N_1**

 Select this option when you wish to fix N_2 at some value (or values), and then solve only for N_1. Please note that for some values of N_2, there may not be a value of N_1 that is large enough to obtain the desired power.

- **Enter $R = N_2/N_1$, solve for N_1 and N_2**

 For this choice, you set a value for the ratio of N_2 to N_1, and then PASS determines the needed N_1 and N_2, with this ratio, to obtain the desired power. An equivalent representation of the ratio, R, is

 $$ N_2 = R \times N_1. $$

- **Enter percentage in Group 1, solve for N_1 and N_2**

 For this choice, you set a value for the percentage of the total sample size that is in Group 1, and then PASS determines the needed N_1 and N_2 with this percentage to obtain the desired power.

N2 (Sample Size, Group 2)

This option is displayed if Group Allocation = “Enter N_2, solve for N_1”

N_2 is the number of items or individuals sampled from the Group 2 population.

N_2 must be ≥ 2. You can enter a single value or a series of values.

R (Group Sample Size Ratio)

This option is displayed only if Group Allocation = “Enter $R = N_2/N_1$, solve for N_1 and N_2.”

R is the ratio of N_2 to N_1. That is,

$$ R = \frac{N_2}{N_1}. $$
Use this value to fix the ratio of \(N2 \) to \(N1 \) while solving for \(N1 \) and \(N2 \). Only sample size combinations with this ratio are considered.

\(N2 \) is related to \(N1 \) by the formula:

\[
N2 = \lfloor R \times N1 \rfloor,
\]

where the value \(\lfloor Y \rfloor \) is the next integer \(\geq Y \).

For example, setting \(R = 2.0 \) results in a Group 2 sample size that is double the sample size in Group 1 (e.g., \(N1 = 10 \) and \(N2 = 20 \), or \(N1 = 50 \) and \(N2 = 100 \)).

\(R \) must be greater than 0. If \(R < 1 \), then \(N2 \) will be less than \(N1 \); if \(R > 1 \), then \(N2 \) will be greater than \(N1 \). You can enter a single or a series of values.

Percent in Group 1

This option is displayed only if Group Allocation = “Enter percentage in Group 1, solve for \(N1 \) and \(N2 \).”

Use this value to fix the percentage of the total sample size allocated to Group 1 while solving for \(N1 \) and \(N2 \). Only sample size combinations with this Group 1 percentage are considered. Small variations from the specified percentage may occur due to the discrete nature of sample sizes.

The Percent in Group 1 must be greater than 0 and less than 100. You can enter a single or a series of values.

Sample Size (When Not Solving for Sample Size)

Group Allocation

Select the option that describes how individuals in the study will be allocated to Group 1 and to Group 2.

The options are

- **Equal (\(N1 = N2 \))**
 This selection is used when you wish to have equal sample sizes in each group. A single per group sample size will be entered.

- **Enter \(N1 \) and \(N2 \) individually**
 This choice permits you to enter different values for \(N1 \) and \(N2 \).

- **Enter \(N1 \) and \(R \), where \(N2 = R \times N1 \)**
 Choose this option to specify a value (or values) for \(N1 \), and obtain \(N2 \) as a ratio (multiple) of \(N1 \).

- **Enter total sample size and percentage in Group 1**
 Choose this option to specify a value (or values) for the total sample size (\(N \)), obtain \(N1 \) as a percentage of \(N \), and then \(N2 \) as \(N - N1 \).

Sample Size Per Group

This option is displayed only if Group Allocation = “Equal (\(N1 = N2 \)).”

The Sample Size Per Group is the number of items or individuals sampled from each of the Group 1 and Group 2 populations. Since the sample sizes are the same in each group, this value is the value for \(N1 \), and also the value for \(N2 \).

The Sample Size Per Group must be \(\geq 2 \). You can enter a single value or a series of values.
N1 (Sample Size, Group 1)
This option is displayed if Group Allocation = “Enter N1 and N2 individually” or “Enter N1 and R, where N2 = R * N1.”
N1 is the number of items or individuals sampled from the Group 1 population.
N1 must be ≥ 2. You can enter a single value or a series of values.

N2 (Sample Size, Group 2)
This option is displayed only if Group Allocation = “Enter N1 and N2 individually.”
N2 is the number of items or individuals sampled from the Group 2 population.
N2 must be ≥ 2. You can enter a single value or a series of values.

R (Group Sample Size Ratio)
This option is displayed only if Group Allocation = “Enter N1 and R, where N2 = R * N1.”
R is the ratio of N2 to N1. That is,

\[R = \frac{N2}{N1} \]

Use this value to obtain N2 as a multiple (or proportion) of N1.
N2 is calculated from N1 using the formula:

\[N2 = \lceil R \times N1 \rceil, \]

where the value \(\lceil Y \rceil \) is the next integer ≥ Y.
For example, setting \(R = 2.0 \) results in a Group 2 sample size that is double the sample size in Group 1.
R must be greater than 0. If \(R < 1 \), then N2 will be less than N1; if \(R > 1 \), then N2 will be greater than N1. You can enter a single value or a series of values.

Total Sample Size (N)
This option is displayed only if Group Allocation = “Enter total sample size and percentage in Group 1.”
This is the total sample size, or the sum of the two group sample sizes. This value, along with the percentage of the total sample size in Group 1, implicitly defines N1 and N2.
The total sample size must be greater than one, but practically, must be greater than 3, since each group sample size needs to be at least 2.
You can enter a single value or a series of values.

Percent in Group 1
This option is displayed only if Group Allocation = “Enter total sample size and percentage in Group 1.”
This value fixes the percentage of the total sample size allocated to Group 1. Small variations from the specified percentage may occur due to the discrete nature of sample sizes.
The Percent in Group 1 must be greater than 0 and less than 100. You can enter a single value or a series of values.
Effect Size

R0 (Superiority Margin Ratio)

Enter a value (or range of values) for the ratio of the two mean event rates assumed by the superiority by a margin null hypothesis. The range of possible values depends on the test direction. When higher rates are better, the superiority by a margin test hypotheses are \(H_0: \lambda_2 / \lambda_1 \leq R_0 \) vs. \(H_1: \lambda_2 / \lambda_1 > R_0 \), and \(R_0 > 1 \). When higher rates are worse (lower are better), the superiority by a margin test hypotheses are \(H_0: \lambda_2 / \lambda_1 \geq R_0 \) vs. \(H_1: \lambda_2 / \lambda_1 < R_0 \), and \(R_0 < 1 \).

\(\lambda_1 \) (Event Rate of Group 1)

Enter a value (or range of values) for the mean event rate per time unit in group 1 (control).

Example of Estimating \(\lambda_1 \)

If 200 patients were exposed for 1 year (i.e. \(t_1 = 1 \) year) and 40 experienced the event of interest, then the mean event rate would be \(\lambda_1 = 40/(200*1) = 0.2 \) per patient-year. If 200 patients were exposed for 2 years (i.e. \(t_1 = 2 \) years) and 40 experienced the event of interest, then the mean event rate would be \(\lambda_1 = 40/(200*2) = 0.1 \) per patient-year. \(\lambda_1 \) is used with \(\lambda_2 \) to calculate the event rate ratio as \(\lambda_2 / \lambda_1 \). The range is \(\lambda_1 > 0 \). You can enter a single value such as 1 or a series of values such as 1 1.2 1.4 or 1 to 2 by 0.5.

Enter \(\lambda_2 \) or Ratio for Group 2

Indicate whether to enter the Group 2 event rate (\(\lambda_2 \)) directly or the event rate ratio (\(\lambda_2 / \lambda_1 \)) to specify \(\lambda_2 \). The event rate ratio is calculated from \(\lambda_2 \) and \(\lambda_1 \) as \(\lambda_2 / \lambda_1 \). \(\lambda_2 \) (Event Rate of Group 2)

Enter a value (or range of values) for the mean event rate per time unit in group 2 (treatment).

Example of Estimating \(\lambda_2 \)

If 200 patients were exposed for 1 year (i.e. \(t_1 = 1 \) year) and 40 experienced the event of interest, then the mean event rate would be \(\lambda_2 = 40/(200*1) = 0.2 \) per patient-year. If 200 patients were exposed for 2 years (i.e. \(t_1 = 2 \) years) and 40 experienced the event of interest, then the mean event rate would be \(\lambda_2 = 40/(200*2) = 0.1 \) per patient-year. \(\lambda_1 \) is used with \(\lambda_2 \) to calculate the event rate ratio as \(\lambda_2 / \lambda_1 \). The range is \(\lambda_2 > 0 \). You can enter a single value such as 1 or a series of values such as 1 1.2 1.4 or 1 to 2 by 0.5.

\(\lambda_2 / \lambda_1 \) (Ratio of Event Rates)

This is the (assumed, known, true) value of the ratio of the two event rates, \(\lambda_1 \) and \(\lambda_2 \), at which the power is to be calculated. The event rate ratio is calculated from \(\lambda_1 \) and \(\lambda_2 \) as \(\lambda_2 / \lambda_1 \). The range is \(\lambda_2 / \lambda_1 > 0 \) and \(\lambda_2 / \lambda_1 \neq R_0 \). When higher rates are better, \(\lambda_2 / \lambda_1 > R_0 \) and \(R_0 > 1 \). When higher rates are worse (lower are better), \(\lambda_2 / \lambda_1 < R_0 \), and \(R_0 < 1 \). You can enter a single value such as 1 or a series of values such as 0.9 0.95 1 1.05 1.1 or 0.9 to 1.1 by 0.05.

\(\phi \) (Dispersion)

Enter a value or series of values for the anticipated dispersion. Dispersion values lower than 1 indicate under-dispersion, which implies the variance is less than the mean. Dispersion values greater than 1 indicate over-dispersion, which implies the variance is greater than the mean. If over-dispersion or under-dispersion are not anticipated, enter a value of 1. You can enter a single value such as 1 or a series of values such as 0.9 0.95 1.05 1.1 or 0.9 to 1.1 by 0.05.
Example 1 – Calculating Sample Size

Researchers wish to determine whether the average Poisson rate of those receiving a new treatment is more than 10% lower than the current control. In the scenario, lower Poisson rates are better than higher rates. The average exposure time for all subjects is 1.8 years. The event rate of the control group is 2.6 events per year. The researchers would like to examine the effect on sample size of a range of treatment group event rates from 2.2 down to 1.5. Over-dispersion is not anticipated.

The desired power is 0.9 and the significance level will be 0.025. The variance calculation method used will be the method where the assumed rates are used.

Setup

This section presents the values of each of the parameters needed to run this example. First load the Superiority by a Margin Tests for the Ratio of Two Poisson Rates procedure window from the menus. You may then make the appropriate entries as listed below, or open Example 1 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td>Sample Size</td>
</tr>
<tr>
<td>Higher Poisson Rates Are</td>
<td>Worse</td>
</tr>
<tr>
<td>Variance Calculation Method</td>
<td>Using Assumed True Rates</td>
</tr>
<tr>
<td>Power</td>
<td>0.90</td>
</tr>
<tr>
<td>μ(t) (Average Exposure Time)</td>
<td>1.8</td>
</tr>
<tr>
<td>Group Allocation</td>
<td>Equal (N1 = N2)</td>
</tr>
<tr>
<td>R0 (Superiority Margin Ratio)</td>
<td>0.9</td>
</tr>
<tr>
<td>λ1 (Event Rate of Group 1)</td>
<td>2.6</td>
</tr>
<tr>
<td>Enter λ2 or Ratio for Group 2</td>
<td>λ2 (Event Rate of Group 2) 1.5 to 2.2 by 0.1</td>
</tr>
<tr>
<td>φ (Dispersion)</td>
<td>1</td>
</tr>
</tbody>
</table>

Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Power</th>
<th>N1</th>
<th>N2</th>
<th>N</th>
<th>Average Exposure Time</th>
<th>μ(t)</th>
<th>λ1</th>
<th>λ2</th>
<th>Superiority Margin Ratio R0</th>
<th>Dispersion φ</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90851</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>1.8</td>
<td>2.60</td>
<td>1.50</td>
<td>0.577</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90151</td>
<td>41</td>
<td>41</td>
<td>82</td>
<td>1.8</td>
<td>2.60</td>
<td>1.70</td>
<td>0.615</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90190</td>
<td>56</td>
<td>56</td>
<td>112</td>
<td>1.8</td>
<td>2.60</td>
<td>1.80</td>
<td>0.692</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90096</td>
<td>80</td>
<td>80</td>
<td>160</td>
<td>1.8</td>
<td>2.60</td>
<td>1.90</td>
<td>0.731</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90102</td>
<td>123</td>
<td>123</td>
<td>246</td>
<td>1.8</td>
<td>2.60</td>
<td>2.00</td>
<td>0.769</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90069</td>
<td>210</td>
<td>210</td>
<td>420</td>
<td>1.8</td>
<td>2.60</td>
<td>2.10</td>
<td>0.808</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90059</td>
<td>430</td>
<td>430</td>
<td>860</td>
<td>1.8</td>
<td>2.60</td>
<td>2.20</td>
<td>0.846</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
<tr>
<td>0.90021</td>
<td>1288</td>
<td>1288</td>
<td>2576</td>
<td>1.8</td>
<td>2.60</td>
<td>2.30</td>
<td>0.885</td>
<td>0.900</td>
<td>1.00</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Superiority by a Margin Tests for the Ratio of Two Poisson Rates

Report Definitions
Power is the probability of rejecting the null hypothesis when it is false.
N1 and N2 are the number of subjects in groups 1 and 2, respectively.
N is the total sample size. N = N1 + N2.
μ(t) is the average exposure (observation) time across subjects in both groups.
λ1 is the event rate per time unit in Group 1 (control).
λ2 is the event rate per time unit in Group 2 (treatment).
λ2 / λ1 is the (known, true, assumed) ratio of the two event rates.
Dispersion (φ) is the dispersion parameter (φ > 1 implies over-dispersion, φ < 1 implies under-dispersion).
R0 is the superiority margin (null hypothesis) ratio.
Alpha is the probability of rejecting the null hypothesis when it is true.

Summary Statements
For a test of H0: λ2 / λ1 ≥ 0.900 vs. H1: λ2 / λ1 < 0.900 (assuming higher Poisson rates are worse), and using the variance calculation method with assumed true rates, samples of 32 and 32 subjects with average exposure time 1.80 achieve 90.851% power to detect an event rate ratio λ2 / λ1 of 0.577 when the event rate in group 1 (λ1) is 2.60, the event rate in group 2 (λ2) is 1.50, the dispersion is 1.00, and the significance level (alpha) is 0.025.

Dropout-Inflated Sample Size

<table>
<thead>
<tr>
<th>Dropout Rate</th>
<th>N1</th>
<th>N2</th>
<th>N</th>
<th>N1'</th>
<th>N2'</th>
<th>N'</th>
<th>D1</th>
<th>D2</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>20%</td>
<td>41</td>
<td>41</td>
<td>82</td>
<td>52</td>
<td>52</td>
<td>104</td>
<td>11</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>20%</td>
<td>56</td>
<td>56</td>
<td>112</td>
<td>70</td>
<td>70</td>
<td>140</td>
<td>14</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>20%</td>
<td>80</td>
<td>80</td>
<td>160</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>20%</td>
<td>123</td>
<td>123</td>
<td>246</td>
<td>154</td>
<td>154</td>
<td>308</td>
<td>31</td>
<td>31</td>
<td>62</td>
</tr>
<tr>
<td>20%</td>
<td>210</td>
<td>210</td>
<td>420</td>
<td>263</td>
<td>263</td>
<td>526</td>
<td>53</td>
<td>53</td>
<td>106</td>
</tr>
<tr>
<td>20%</td>
<td>430</td>
<td>430</td>
<td>860</td>
<td>538</td>
<td>538</td>
<td>1076</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>20%</td>
<td>1288</td>
<td>1288</td>
<td>2576</td>
<td>1610</td>
<td>1610</td>
<td>3220</td>
<td>322</td>
<td>322</td>
<td>644</td>
</tr>
</tbody>
</table>

Definitions
Dropout Rate (DR) is the percentage of subjects (or items) that are expected to be lost at random during the course of the study and for whom no response data will be collected (i.e. will be treated as "missing").
N1, N2, and N are the evaluable sample sizes at which power is computed. If N1 and N2 subjects are evaluated out of the N1' and N2' subjects that are enrolled in the study, the design will achieve the stated power.
N1', N2', and N' are the number of subjects that should be enrolled in the study in order to end up with N1, N2, and N evaluable subjects, based on the assumed dropout rate. After solving for N1 and N2, N1' and N2' are calculated by inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., and Wang, H. (2008) pages 39-40.)
D1, D2, and D are the expected number of dropouts. D1 = N1' - N1, D2 = N2' - N2, and D = D1 + D2.

This report shows the sample sizes for the indicated scenarios.
This plot represents the required sample sizes for various values of λ_2.

Example 2 – Validation

We did not find a publication with an example of a superiority by a margin test for the ratio of two Poisson rates. However, Examples 2 and 3 of the Non-Inferiority Tests for the Ratio of Two Poisson Rates chapter use the same formulas and calculations as those used in this procedure. We refer the reader to those examples for validation of this procedure.