Chapter 482

Tests for Two Means in a Cluster-Randomized Design

Introduction

Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into the treatment group or the control group. In this case, the means of two groups, made up of \(K_i \) clusters of \(M_{ij} \) individuals each, are to be tested using a modified \(z \) test or \(t \)-test, in which the clusters are treated as subjects. Generally speaking, the larger the cluster sizes and the higher the correlation among subjects within the same cluster, the larger will be the overall sample size necessary to detect an effect with the same power.

Technical Details

Our formulation comes from Campbell and Walters (2014) and Ahn, Heo, and Zhang (2015). Denote an observation by \(Y_{ijk} \) where \(i = 1, 2 \) gives the group, \(j = 1, 2, \ldots, K_i \) gives the cluster within group \(i \), and \(k = 1, 2, \ldots, m_{ij} \) denotes an individual in cluster \(j \) of group \(i \).

We let \(\sigma^2 \) denote the variance of \(Y_{ijk} \), which is \(\sigma^2_{\text{between}} + \sigma^2_{\text{within}} \), where \(\sigma^2_{\text{between}} \) is the variation between clusters and \(\sigma^2_{\text{within}} \) is the variation within clusters. Also, let \(\rho \) denote the intracluster correlation coefficient (ICC) which is \(\sigma^2_{\text{between}}/(\sigma^2_{\text{between}} + \sigma^2_{\text{within}}) \). This correlation is the simply correlation between any two observations in the same cluster.

For sample size calculation, we assume that the \(m_{ij} \) are distributed with a mean cluster size of \(M_i \) and a coefficient of variation cluster sizes of \(COV \). The variance of the two group means, \(\bar{Y}_i \), are approximated by

\[
V_i = \frac{\sigma^2(DE_i)(RE_i)}{K_iM_i}
\]

\[
DE_i = 1 + (M_i - 1)\rho
\]

\[
RE_i = \frac{1}{1 - (COV)^2\lambda_i(1 - \lambda_i)}
\]

\[
\lambda_i = M_i\rho/(M_i\rho + 1 - \rho)
\]

DE is called the Design Effect and RE is the Relative Efficiency of unequal to equal cluster sizes. Both are greater than or equal to one, so both inflate the variance.
Tests for Two Means in a Cluster-Randomized Design

Assume that $\delta = \mu_1 - \mu_2$ is to be tested using a t-test (small sample) or z-test (large sample). The statistical hypotheses are $H_0: \delta = 0$ vs. $H_a: \delta \neq 0$. The test statistic

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\frac{1}{V_1} + \frac{1}{V_2}}}$$

has an approximate t distribution with degrees of freedom $DF = K_1M_1 + K_2M_2 - 2$ for a subject-level analysis or $K_1 + K_2 - 2$ for a cluster-level analysis.

Let the noncentrality parameter $\Delta = \frac{\delta}{\sigma_d}$, where $\sigma_d = \sqrt{V_1 + V_2}$. We can define the two critical values based on a central t-distribution with DF degrees of freedom as follows.

$$X_1 = t\frac{\sigma}{\sqrt{\Delta}}$$

$$X_2 = t_{1-\alpha\frac{1}{2}}\frac{\sigma}{\sqrt{\Delta}}$$

The power can be found from the following to probabilities

$$P_1 = H_{X_1,DF,\Delta}$$

$$P_2 = H_{X_2,DF,\Delta}$$

$$\text{Power} = 1 - (P_2 - P_1)$$

where $H_{X,DF,\Delta}$ is the cumulative probability distribution of the noncentral-t distribution.

The power of a one-sided test can be calculated similarly.

Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter.

Design Tab

The Design tab contains most of the parameters and options that you will be concerned with.

Solve For

Solve For

This option specifies the parameter to be solved for from the other parameters. The parameters that may be selected are δ, Power, K_1, and M_1.

Under most situations, you will select either Power to calculate power or K_1 to calculate the number of clusters. Occasionally, you may want to fix the number of clusters and find the necessary cluster size.

Note that the value selected here always appears as the vertical axis on the charts.

The program is set up to calculate power directly. To find appropriate values of the other parameters, a binary search is made using an iterative procedure until an appropriate value is found.
Tests for Two Means in a Cluster-Randomized Design

Test

Alternative Hypothesis
Specify whether the test is one-sided or two-sided. A two-sided hypothesis states that the means are not equal without specifying which is greater. If you do not have any special reason to do otherwise, you should use the two-sided option.

The one-sided options $\delta < 0$ and $\delta > 0$ select one-tailed tests. When you choose one of these, you should be careful that you enter a δ value that is consistent with this alternative hypothesis direction. For example, if you select $\delta < 0$ here, the values of δ that you enter below should be negative.

Test Statistic
Specify which t-test statistic you are going to use: a t-test based on the number of subjects or a t-test in which the cluster means are treated as subjects.

- **T-Test Based on Number of Subjects**
 This uses the methodology shown in the recent books by Campbell and Walters (2014) and Ahn, Heo, and Zhang (2015). In this case, power is based on a t-test in which the variance is inflated to adjust for the clustering and the degrees of freedom is based on the number of subjects.

- **T-Test Based on Number of Clusters**
 This uses the original methodology of Donner and Klar (1996). In this case, power is based on a t-test in which the variance is also inflated to adjust for the clustering, but the degrees of freedom are based on the number of clusters. Donner and Klar ignored the impact of COV, so, if you want to match their results, you should set the COV to zero.

Power and Alpha

Power
This option specifies one or more values for power. Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for power. Now, 0.90 (Beta = 0.10) is also commonly used.

A single value may be entered or a range of values such as 0.8 to 0.95 by 0.05 may be entered.

If your only interest is in determining the appropriate sample size for a confidence interval, set power to 0.5.

Alpha
This option specifies one or more values for the probability of a type-I error. A type-I error occurs when a true null hypothesis is rejected.

Values must be between zero and one. Usually, the value of 0.05 is used for alpha and this has become a standard. This means that about one test in twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a type-I error you are willing to take in your experimental situation.

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.
Sample Size – Number of Clusters & Cluster Size

Group 1 (Treatment)

K1 (Number of Clusters)
Enter a value (or range of values) for the number of clusters in the treatment group. You may enter a range of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters times the average cluster size.

M1 (Average Cluster Size)
This is the average number of subjects per cluster in group one. This value must be a positive number that is at least one. You can use a list of values such as 100 150 200.

Group 2 (Control)

K2 (Number of Clusters)
This is the number of clusters in group two. This value must be a positive number. The sample size for this group is equal to the number of clusters times the number of subjects per cluster.

If you simply want a multiple of the value for group one, you would enter the multiple followed by \(K1 \), with no blanks. If you want to use \(K1 \) directly, you do not have to premultiply by 1. For example, all of the following are valid entries: \(10 K1 2K1 0.5K1 K1 \).

You can use a list of values such as 10 20 30 or \(K1 2K1 3K1 \).

M2 (Average Cluster Size)
This is the average number of subjects per cluster in group two. This value must be at least one.

If you simply want a multiple of the value for group one, you would enter the multiple followed by \(M1 \), with no blanks. If you want to use \(M1 \) directly, you do not have to premultiply by 1. For example, all of the following are valid entries: \(10M1 2M1 0.5M1 M1 \).

You can use a list of values such as 10 20 30 or \(M1 2M1 3M1 \).

Coefficient of Variation of Cluster Sizes

COV of Cluster Sizes
Enter the coefficient of variation of the cluster sizes (number of subjects). This value must be zero or a positive number. The COV of X is defined as the standard deviation of X divided by the mean of X.

Campbell and Walters (2014) page 71 give guidance on the possible values of COV. They indicate that as the average cluster size increases, COV tends toward 0.65. They say that typical values of COV range from 0.4 to 0.9.

You can use a list of values such as 0.4 0.6 0.8.

Standard Deviation
The standard deviation, calculated by the sample formula (divide by n-1), is a measure of the variability. When no other information is available, Campbell and Walters (2014) page 71 suggest using (Maximum Cluster Size - Minimum Cluster Size) / 4.

All Cluster Sizes Equal
When all cluster sizes are equal, the coefficient of variation is zero.
Effect Size

δ (Mean Difference = μ1 – μ2)

Enter a value for the difference between the means of groups 1 and 2 at which the design is powered. That is, the power is the probability of detecting a difference of at least this amount. This value does not represent the true difference between the means. Rather, it is the value at which you want the sample size computed.

δ can be any non-zero value (positive or negative), but it should be consistent with the choice of the alternative hypothesis. Also, it should have the same scale as the standard deviation.

You can enter a single value such as 10 or a series of values such as 10 20 30 or 5 to 50 by 5.

When a series of values is entered, PASS will generate a separate calculation result for each value of the series.

σ (Standard Deviation)

Enter the subject-to-subject standard deviation. This standard deviation applies for both groups.

Note that σ must be a positive number. You can enter a single value such as 5 or a series of values such as 1 3 5 7 9 or 1 to 9 by 2.

Press the small ‘σ’ button to the right to obtain calculation options for estimating the standard deviation.

ρ (Intracluster Correlation, ICC)

This is the value of the intracluster correlation coefficient. It may be interpreted as the correlation between any two observations in the same cluster. It may also be thought of as the proportion of the variation in response that can be accounted for by the between-cluster variation.

Possible values are from 0 to just below 1. Typical values are between 0.0001 and 0.05.

You may enter a single value or a list of values.
Example 1 – Calculating Power

Suppose that a cluster randomized study is to be conducted in which \(\delta = 1; \sigma = 2; \rho = 0.01; M1 \) and \(M2 = 5 \) or \(10; \) \(COV = 0.65; \) \(alpha = 0.05; \) and \(K1 \) and \(K2 = 5 \) to \(20 \) by \(5. \) Power is to be calculated for a two-sided test.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Tests for Two Means in a Cluster-Randomized Design procedure window by expanding Means, then Two Independent Means, then clicking on Cluster-Randomized, and then clicking on Tests for Two Means in a Cluster-Randomized Design. You may then make the appropriate entries as listed below, or open Example 1 by going to the File menu and choosing Open Example Template.

Option Value

Design Tab
- **Solve For**: Power
- **Ha (Alternative Hypothesis)**: Two-Sided (Ha: \(\delta \neq 0 \))
- **Test Statistic**: T-Test Based on Number of Subjects
- **Alpha**: 0.05
- **K1 (Number of Clusters)**: 5, 10, 15, 20
- **M1 (Average Cluster Size)**: 5, 10
- **K2 (Number of Clusters)**: K1
- **M2 (Average Cluster Size)**: M1
- **COV of Cluster Sizes**: 0.65
- **\(\delta \) (Mean Difference = \(\mu_1 - \mu_2 \))**: 1
- **\(\sigma \) (Standard Deviation)**: 2
- **\(\rho \) (Intracluster Correlation, ICC)**: 0.01

Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Power</th>
<th>Subj Cnt Gr 1</th>
<th>Subj Cnt Gr 2</th>
<th>Clus Cnt Gr 1</th>
<th>Clus Cnt Gr 2</th>
<th>Clus Cnt Gr 1</th>
<th>Clus Cnt Gr 2</th>
<th>Clus Size Gr 1</th>
<th>Clus Size Gr 2</th>
<th>COV Sizes</th>
<th>Diff (\mu_1 - \mu_2)</th>
<th>Std Dev</th>
<th>ICC</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3908</td>
<td>25</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.001</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.6439</td>
<td>50</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.6714</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.9115</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.8399</td>
<td>75</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.9822</td>
<td>150</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.9274</td>
<td>100</td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.9969</td>
<td>200</td>
<td>200</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>0.650</td>
<td>1.00</td>
<td>2.00</td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td></td>
</tr>
</tbody>
</table>
Tests for Two Means in a Cluster-Randomized Design

References

Report Definitions
Power is the probability of rejecting a false null hypothesis. It should be close to one.
N1 and N2 are the number of subjects in groups 1 and 2, respectively.
K1 and K2 are the number of clusters in groups 1 and 2, respectively.
M1 and M2 are the average number of items (subjects) per cluster in groups 1 and 2, respectively.
\[\delta \] is the mean difference (\(\mu_1 - \mu_2 \)) in the response at which the power is calculated.
\[\sigma \] is the standard deviation of the subject responses.
\[\rho \] (ICC) is the intracluster correlation.
Alpha is the probability of rejecting a true null hypothesis, that is, rejecting when the means are actually equal.

Summary Statements
Sample sizes of 25 in group one and 25 in group two, which were obtained by sampling 5 clusters with an average of 5 subjects each in group one and 5 clusters with an average of 5 subjects each in group two, achieve 39% power to detect a difference between the group means of at least 1. The standard deviation of subjects is 2.00. The intraclass correlation coefficient is 0.010. The coefficient of variation of cluster sizes is 0.650. A two-sided t-test was used with a significance level of 0.050. This test used degrees of freedom based on the number of subjects.

This report shows the power for each of the scenarios.

Plots Section

These plots show the power versus the cluster size for the two alpha values.
Example 2 – Validation using Donner and Klar (1996)

Donner and Klar (1996) page 436 provide a table in which several power values are calculated for a two-sided test. When alpha is 0.05, δ is 0.2, ρ is 0.001, σ is 1.0, and $K_1 = K_2 = 3$, they calculate a power of 0.43 for an $M_1 = M_2$ of 100, 0.79 for an $M_1 = M_2$ of 300, and 0.91 for an $M_1 = M_2$ of 500. COV = 0.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Tests for Two Means in a Cluster-Randomized Design procedure window by expanding Means, then Two Independent Means, then clicking on Cluster-Randomized, and then clicking on Tests for Two Means in a Cluster-Randomized Design. You may then make the appropriate entries as listed below, or open Example 2 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>Power</td>
</tr>
<tr>
<td>Ha (Alternative Hypothesis)</td>
<td>Two-Sided (Ha: $\delta \neq 0$)</td>
</tr>
<tr>
<td>Test Statistic</td>
<td>T-Test Based on Number of Clusters</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>K1 (Number of Clusters)</td>
<td>3</td>
</tr>
<tr>
<td>M1 (Average Cluster Size)</td>
<td>100 300 500</td>
</tr>
<tr>
<td>K2 (Number of Clusters)</td>
<td>K_1</td>
</tr>
<tr>
<td>M2 (Average Cluster Size)</td>
<td>M_1</td>
</tr>
<tr>
<td>COV of Cluster Sizes</td>
<td>0</td>
</tr>
<tr>
<td>δ (Mean Difference $= \mu_1 - \mu_2$)</td>
<td>0.2</td>
</tr>
<tr>
<td>σ (Standard Deviation)</td>
<td>1</td>
</tr>
<tr>
<td>ρ (Intracluster Correlation, ICC)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>Numeric Results for a Test of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Statistic: T-Test with DF based on number of clusters</td>
</tr>
<tr>
<td>Hypotheses: $H_0: \delta = 0$ vs. $H_a: \delta \neq 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>N1</th>
<th>N2</th>
<th>K1</th>
<th>K2</th>
<th>M1</th>
<th>M2</th>
<th>COV</th>
<th>Clus Sizes</th>
<th>Clus</th>
<th>COV</th>
<th>Clus</th>
<th>Clus</th>
<th>Diff</th>
<th>Std Dev</th>
<th>ICC</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4301</td>
<td>300</td>
<td>300</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td>0.000</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7924</td>
<td>900</td>
<td>900</td>
<td>3</td>
<td>3</td>
<td>300</td>
<td>300</td>
<td>0.000</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9091</td>
<td>1500</td>
<td>1500</td>
<td>3</td>
<td>3</td>
<td>500</td>
<td>500</td>
<td>0.000</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.20</td>
<td>1.00</td>
<td>0.001</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PASS calculates the same power values as Donner and Klar (1996).
Example 3 – Validation using Campbell and Walters (2014)

Campbell and Walters (2014) page 71 give an example of the effect of variable cluster size when a subject-level analysis is run. In this example, they set alpha to 0.05, and ρ to 0.05. They don’t specifically give values for the mean and standard deviation. By trial and error, we found that for a power of 0.9, δ of 0.3247 and σ of 1 gave results that matched theirs for a two-sided test. They indicate that when COV = 0, $K_1 = 29$. When COV = 0.725, $K_1 = 33$.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the Tests for Two Means in a Cluster-Randomized Design procedure window by expanding Means, then Two Independent Means, then clicking on Cluster-Randomized, and then clicking on Tests for Two Means in a Cluster-Randomized Design. You may then make the appropriate entries as listed below, or open Example 3 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>K_1 (Number of Clusters)</td>
</tr>
<tr>
<td>Ha (Alternative Hypothesis)</td>
<td>Two-Sided (Ha: $\delta \neq 0$)</td>
</tr>
<tr>
<td>Test Statistic</td>
<td>T-Test Based on Number of Subjects</td>
</tr>
<tr>
<td>Power</td>
<td>0.90</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>M1 (Average Cluster Size)</td>
<td>10</td>
</tr>
<tr>
<td>K2 (Number of Clusters)</td>
<td>K_1</td>
</tr>
<tr>
<td>M2 (Average Cluster Size)</td>
<td>M_1</td>
</tr>
<tr>
<td>COV of Cluster Sizes</td>
<td>0 0.725</td>
</tr>
<tr>
<td>δ (Mean Difference = $\mu_1 - \mu_2$)</td>
<td>0.3247</td>
</tr>
<tr>
<td>σ (Standard Deviation)</td>
<td>1</td>
</tr>
<tr>
<td>ρ (Intracluster Correlation, ICC)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

| Numeric Results for a Test of Mean Difference
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Statistic: T-Test with DF based on number of subjects</td>
</tr>
<tr>
<td>Hypotheses: $H_0: \delta = 0$ vs. $H_a: \delta \neq 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>Subj Clus</th>
<th>Subj Clus</th>
<th>Clus Clus</th>
<th>Clus Clus</th>
<th>Clus Clus</th>
<th>COV COV</th>
<th>Diff Diff</th>
<th>Std Std</th>
<th>ICC ICC</th>
<th>ρ</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9000</td>
<td>290 N1</td>
<td>290 N2</td>
<td>29 K1</td>
<td>29 K2</td>
<td>10 M1</td>
<td>0.000</td>
<td>0.32</td>
<td>1.00</td>
<td>0.050</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>0.9016</td>
<td>330 N1</td>
<td>330 N2</td>
<td>33 K1</td>
<td>33 K2</td>
<td>10 M1</td>
<td>0.725</td>
<td>0.32</td>
<td>1.00</td>
<td>0.050</td>
<td>0.050</td>
<td></td>
</tr>
</tbody>
</table>

PASS calculates the same values of K_1 as Campbell and Walters (2014).